Nara Women's University

1有限測度,確率測度

メタデータ	言語: Japanese
	出版者: 奈良女子大学 理学部 富﨑松代,森藤由美
	公開日: 2012-03-13
	キーワード (Ja): 加法族, 確率測度, 有限測度
	キーワード (En):
	作成者: 富﨑, 松代, 森藤, 由美
	メールアドレス:
	所属:
URL	http://hdl.handle.net/10935/2922

確率解析学

2011年4月

§1 有限測度, 確率測度

~ 定義 1.1 -

 Ω を空でない集合とし、A をその部分集合族とする。A が次の3条件を満たすとき、 $(\Omega \perp 0)$ 加法族という.

- (1.1) $\Omega \in \mathcal{A}$.
- $(1.2) \quad A \in \mathcal{A} \Longrightarrow A^c \in \mathcal{A}.$
- (1.3) $A_n \in \mathcal{A} \ (n = 1, 2, \dots, k) \Longrightarrow \bigcup_{n=1}^k A_n \in \mathcal{A}.$

- 定義 1.2 -

 Ω を空でない集合とし、F をその部分集合族とする。F が次の3条件を満たすとき、 $(\Omega \perp \sigma) \sigma$ -加法族という.

- (1.1) $\Omega \in \mathcal{F}$.
- (1.2) $A \in \mathcal{F} \Longrightarrow A^c \in \mathcal{F}$. (1.4) $A_n \in \mathcal{F} \ (n \in \mathbb{N}) \Longrightarrow \bigcup_{n=1}^{\infty} A_n \in \mathcal{F}$.

- 注意 1.3 -

- (i) σ -加法族は加法族である.
- (ii) 加法族は σ -加法族とは限らない.

例 1.4 (1) 次の集合族は σ -加法族である.

- (i) $\mathcal{F} = \{\emptyset, \Omega\}.$
- (ii) $\mathcal{F} = \{\emptyset, E, E^c, \Omega\}, \text{ frib} E \subset \Omega, \emptyset \neq E \neq \Omega.$
- (iii) $\mathcal{F} = \{E : E \subset \Omega\}.$
- (2) 次の集合族は加法族ではない.

 $\mathcal{F} = \{\emptyset, E, \Omega\}, \quad \text{til} E \subset \Omega, \emptyset \neq E \neq \Omega.$

定義 1.5

 Ω ($\neq \emptyset$) に σ -加法族 \mathcal{F} が定められているとき, 組 (Ω , \mathcal{F}) を**可測空間**という. また, \mathcal{F} の要素となる Ω の部分集合を \mathcal{F} -可測集合という.

命題 1.6

 (Ω, \mathcal{F}) を可測空間とし, $A_n \in \mathcal{F}$ $(n \in \mathbb{N})$ とする. このとき次の集合はすべて \mathcal{F} に属する.

$$\emptyset$$
, $\bigcup_{k=1}^{n} A_k \ (n \in \mathbb{N})$, $\bigcap_{k=1}^{n} A_k \ (n \in \mathbb{N})$, $\bigcap_{n=1}^{\infty} A_n$,

$$\limsup_{n\to\infty}A_n:=\bigcap_{n=1}^\infty\bigcup_{k=n}^\infty A_k,\quad \liminf_{n\to\infty}A_n:=\bigcup_{n=1}^\infty\bigcap_{k=n}^\infty A_k.$$

- 定理 1.7 -

 Ω を空でない集合, A を Ω の部分集合族とする. このとき A を含む最小の σ -加法族 が存在する.

- 定義 1.8 -

定理 1.7 の σ -加法族を, A により生成される σ -加法族と呼び, $\sigma(A)$ で表す.

例 1.9 $\Omega = \mathbb{R}^n$ (n 次元ユークリッド空間) とし, \mathcal{O} を開集合の全体, \mathcal{C} を閉集合の全体, \mathcal{I} を左半開区間の全体 とする. このとき $\sigma(\mathcal{O}) = \sigma(\mathcal{C}) = \sigma(\mathcal{I})$ である. この σ -加法族を n 次元ボレル集合族と呼び \mathbf{B}_n で表す. 更に

$$\mathcal{E} = \{(-\infty, r_1] \times (-\infty, r_2] \times \cdots (-\infty, r_n] : r_1, r_2, \cdots, r_n \in \mathbb{Q}\}$$

とおくと $\sigma(\mathcal{E}) = \mathbf{B}_n$ が成り立つ. 但し、 \mathbb{Q} は有理数の全体を表す.

定義 1.10 -

 $(\Omega_i, \mathcal{F}_i)$, $i = 1, 2, \dots, n$ を可測空間とし,

$$\Omega = \Omega_1 \times \Omega_2 \times \cdots \times \Omega_n,$$

$$\mathcal{A} = \{ E : E = E_1 \times E_2 \times \cdots \times E_n, \ E_i \in \mathcal{F}_i \ (i = 1, 2, \dots, n) \},$$

とおく. $\sigma(A)$ を \mathcal{F}_i $(i=1,2,\cdots,n)$ の直積 σ -加法族といい, $(\Omega,\ \sigma(A))$ を $(\Omega_i,\ \mathcal{F}_i),\ i=1,2,\cdots,n$ の直積可測空間という.

例 1.11 $\Omega_i = \mathbb{R}, \ \mathcal{F}_i = \mathbf{B}_1, \ i = 1, 2, \dots, n \$ とおく. $(\Omega_i, \ \mathcal{F}_i), \ i = 1, 2, \dots, n \$ の直積可測空間は $(\mathbb{R}^n, \ \mathbf{B}_n)$ である.

定義 1.12 -

 (Ω, \mathcal{F}) を可測空間とする. \mathcal{F} 上で定義された μ が次の 3 条件を満たすとき, (Ω, \mathcal{F}) 上の (簡単に Ω 上の, または \mathcal{F} 上の) **有限測度**という.

(1.5) $0 \le \mu(A) < \infty \text{ for } \forall A \in \mathcal{F}.$

$$(1.6) \quad A_n \in \mathcal{F} \ (n \in \mathbb{N}), \ A_i \cap A_j = \emptyset \ (i \neq j) \Longrightarrow \mu \left(\bigcup_{n=1}^{\infty} A_n\right) = \sum_{n=1}^{\infty} \mu(A_n).$$

定義 1.13 -

可測空間 (Ω, \mathcal{F}) に有限測度 μ が定義されているとき, 組 $(\Omega, \mathcal{F}, \mu)$ を**有限測度空間** という.

可測空間 (Ω, \mathcal{F}) で定義された有限測度 P で $P(\Omega) = 1$ を満たすものを確率という. 即ち

- 定義 1.14 -

 (Ω, \mathcal{F}) を可測空間とする. \mathcal{F} 上で定義された P が次の 3 条件を満たすとき, (Ω, \mathcal{F}) 上の (簡単に Ω 上の, または \mathcal{F} 上の) 確率または確率測度という.

- $(1.7) \quad 0 \le P(A) \le 1 \text{ for } \forall A \in \mathcal{F}.$
- (1.8) $P(\Omega) = 1$.

$$(1.9) \quad A_n \in \mathcal{F} \ (n \in \mathbb{N}), \ A_i \cap A_j = \emptyset \ (i \neq j) \Longrightarrow P\left(\bigcup_{n=1}^{\infty} A_n\right) = \sum_{n=1}^{\infty} P(A_n).$$

定義 1.15 -

可測空間 (Ω, \mathcal{F}) に確率 P が定義されているとき, \mathbb{A} (Ω, \mathcal{F}, P) を確率空間という.

以下「確率解析学」の講義では、確率空間を基礎とする解析学について勉強する

命題 1.16

 $(\Omega, \mathcal{F}, \mu)$ を有限測度空間とする. このとき以下の性質が成り立つ.

 $(1.10) \quad \mu(\emptyset) = 0.$

$$(1.11) \quad A_i \in \mathcal{F} \ (i = 1, 2, \dots, n), \ A_i \cap A_j = \emptyset \ (i \neq j) \Longrightarrow \mu \left(\bigcup_{i=1}^n A_i\right) = \sum_{i=1}^n \mu(A_i).$$

(1.12) (単調性) $A, B \in \mathcal{F}, A \subset B \Longrightarrow \mu(A) \leq \mu(B).$

(1.13) (劣加法性)
$$A_n \in \mathcal{F} \ (n \in \mathbb{N}) \Longrightarrow \mu \left(\bigcup_{n=1}^{\infty} A_n\right) \leq \sum_{n=1}^{\infty} \mu(A_n).$$

$$(1.14) \quad A_n \in \mathcal{F} \ (n \in \mathbb{N}), \ A_1 \subset A_2 \subset \cdots \Longrightarrow \lim_{n \to \infty} \mu(A_n) = \mu\left(\bigcup_{n=1}^{\infty} A_n\right).$$

$$(1.15) \quad A_n \in \mathcal{F} \ (n \in \mathbb{N}), \ A_1 \supset A_2 \supset \cdots \Longrightarrow \lim_{n \to \infty} \mu(A_n) = \mu\left(\bigcap_{n=1}^{\infty} A_n\right).$$

定理 1.17 (カラテオドリの拡張定理) —

A を Ω の加法族とし, ν を A 上で定義された関数で次の 3 条件を満たすものとする.

 $(1.16) \quad 0 \le \nu(A) < \infty \text{ for } \forall A \in \mathcal{A}.$

$$(1.17) A_n \in \mathcal{A} (n = 1, 2, \dots, k) A_i \cap A_j = \emptyset (i \neq j)$$
 $\Longrightarrow \nu \left(\bigcup_{n=1}^k A_n\right) = \sum_{n=1}^k \nu(A_n).$

$$(1.18) \quad A_n \in \mathcal{A} \ (n = 1, 2, \cdots) \\ A_i \cap A_j = \emptyset \ (i \neq j) \\ \bigcup_{n=1}^{\infty} A_n \in \mathcal{A}$$

$$\Rightarrow \nu \left(\bigcup_{n=1}^{\infty} A_n \right) = \sum_{n=1}^{\infty} \nu(A_n).$$

このとき ν は $\sigma(\mathcal{A})$ 上の有限測度に一意的に拡張できる.即ち,次の条件を満たす $(\Omega,\ \sigma(\mathcal{A}))$ 上の有限測度 μ が唯一つ存在する.

(1.19) $\mu(A) = \nu(A)$ for $\forall A \in \mathcal{A}$.