Nara Women's University

7確率変数の分布と平均値

メタデータ	言語: Japanese
	出版者: 奈良女子大学 理学部 富﨑松代,森藤由美
	公開日: 2012-03-21
	キーワード (Ja): 確率変数, 分布, 平均値
	キーワード (En):
	作成者: 富﨑, 松代, 森藤, 由美
	メールアドレス:
	所属:
URL	http://hdl.handle.net/10935/2928

§7 確率変数の分布と平均値

- 定理 7.1 -

 ${f X}$ を確率空間 (Ω, \mathcal{F}, P) 上で定義された n 次元確率変数, μ を ${f X}$ の分布, g を n 次元ボレル関数とする. $E[g({f X})]$ が存在するならば

(7.1)
$$E[g(\mathbf{X})] = \int_{\mathbb{R}^n} g(\boldsymbol{x}) \, \mu(d\boldsymbol{x}).$$

|注意| (7.1) の左辺は、確率変数 $g(\mathbf{X})$ の平均値であり、(7.1) の右辺は、関数 $g(\mathbf{x})$ の測度 μ による積分である.

定義 7.2 -

確率変数 X に対し,

 $E[X^k]: k$ 次モーメント,

 $E[|X|^k]: k$ 次絶対モーメント,

 $V(X) = E\left[\{X - E[X]\}^2 \right] : 分散,$

C(X,Y) = E[(X - E[X])(Y - E[Y])]: X と Yの共分散.

定理 7.1 より次の関係式が得られる.

$$E[X^{k}] = \int_{\mathbb{R}} x^{k} \mu(dx),$$

$$E[|X|^{k}] = \int_{\mathbb{R}} |x|^{k} \mu(dx),$$

$$V(X) = E\left[\{X - E[X]\}^{2}\right] = \int_{\mathbb{R}} (x - E[X])^{2} \mu(dx),$$

$$C(X,Y) = E\left[(X - E[X])(Y - E[Y])\right]$$

$$= \int_{\mathbb{R}^{2}} (x - E[X])(y - E[Y]) \mu_{X,Y}(dxdy).$$

但し μ はXの分布であり, $\mu_{X,Y}$ はX,Yの結合分布である.

命題 7.3

g を 1 次元ボレル関数とし,E[g(X)] が存在すると仮定せよ.

(i) X が 1 次元離散確率変数の場合.

X が有限個 $a_1, a_2, a_3, \dots, a_n$ の値をとるとき,

$$E[g(X)] = \sum_{i=1}^{n} g(a_i)P(X = a_i).$$

X が可算無限個の値 $a_1, a_2, a_3, \dots, a_n, \dots$ の値をとるとき,

$$E[g(X)] = \sum_{i=1}^{\infty} g(a_i)P(X = a_i).$$

(ii) X が 1 次元連続確率変数の場合. f(x) を確率密度関数とする. このとき

$$E[g(X)] = \int_{\mathbb{R}} g(x)f(x) dx.$$

参考文献 西尾真喜子著「確率論」実教出版 第4章 平均値

演習問題

- (問 7.1) 例 4.12 の確率変数の平均値と分散を求めなさい.
- (問 7.2) 例 4.13 の確率変数の平均値と分散を求めなさい.
- (問 7.3) 例 4.14 の確率変数の平均値と分散を求めなさい.
- (問 7.4) 例 4.15 の確率変数の平均値と分散を求めなさい.
- (問 7.5) 例 4.16 の確率変数の平均値と分散を求めなさい.
- (問 7.6) 例 4.17 の確率変数の平均値と分散を求めなさい.
- (問 7.7) 例 4.18 の確率変数の平均値と分散を求めなさい.
- (問 7.8) 例 4.20 の確率変数の平均値は存在しないことを証明しなさい.