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Introduction

In large-scale spatial ecology, there are two lifelong approaches. Firstly, theoretical ecologists
have typically investigated a range of models depicting individuals with localized interactions
and restricted movement range in homogeneous continuous or discrete (uniform or lattice) space,
demonstrating the processes of population dynamics. In the second approach, landscape ecol-
ogists tend to be occupied by describing the generally very complex physical structure of real
landscapes and less emphasizing on modeling populations dynamics. However, the theoreti-
cal ecologists’ studies are short of testable model predictions, while landscape ecologists’ ones
lack a convincing theoretical framework. Therefore, metapopulation ecology was coined for at-
tempting to achieve a compromise between these two approaches above, in which landscapes
are viewed as networks of idealized habitat patches (fragmented patches) where species occur as
discrete local populations connected by migration (Hanski, 1998 [14]).

The term metapopulation was first given by Richard Levins in 1969 to describe a population
of populations, an abstraction of the population concept to a higher level. Studies of metapop-
ulations relate to the equilibrium theory of island biogeography and studies on the dynamics of
species living in patchy environments or landscapes. These days, many habitats have become
so fragmented that isolated populations cannot be expected to be long-lasting, hence long-term
persistence can occur merely via metapopulation dynamics. Therefore, in the conservation of
species that are already on the edge of becoming extinct, the metapopulation concept may turn
out to be most helpful in the conservation of biodiversity in general in our everyday landscapes.
For experimental studies, however, it is costly and time-consuming to collect data from large
fragmented environments. Because of that, theoretical studies are useful to give predictions
on how metapopulations change with time. Additionally, in reality, local patches are spatially
distributed over a space. Therefore, the colonization rate of an empty patch should critically de-
pend on how occupied patches are distributed around it. This solicits the need to explore spatial
metapopulation models in which spatial distribution of patches is explicitly considered.

In this research, we analyze a spatial metapopulation model as a stochastic point pattern
dynamics. Local patches in our model as points are distributed with a certain spatial configuration
and status of each patch changes stochastically between empty and occupied: an empty patch
becomes occupied by local and global colonization; an occupied patch becomes empty by local
extinction. We implement the stochastic dynamics and carry out simulation analysis. We also
derive an analytical model in terms of singlet, pair and triplet probabilities that describe the
stochastic dynamics. Using a simple closure that approximates triplet probabilities by singlet
and pair probabilities, we show that equilibrium singlet and pair probabilities can be analytically
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derived. The derived equilibrium properties successfully describe simulation results under a
certain condition where the range of local colonization and the proportion of global colonization
play key roles.

Our model is an extension of the classical non-spatial Levins model to a spatially explicit
metapopulation model. Point pattern is quite versatile to represent any spatial distribution of
local patches. We appeal the advantage of point patterns to study spatial dynamics in general
ecology.

The thesis consists of four chapters:
Chapter 1: Introducing some background knowledge on metapopulation and relating studies.
Chapter 2: Explaining how we conduct a spatial metapopulation model as a point pattern dy-

namics. In this chapter we define the model that consists of stochastic simulations and analytical
derivations of singlet and pair probabilities describing the stochastic point pattern dynamics of
the metapopulation model.

Chapter 3: Showing the results of the model and comparing simulation results with analytical
results.

Chapter 4: Discussion about further applications of point pattern approach to study spatial
metapopulations and other spatial population dynamics.



Chapter 1

Previous studies about metapopulation

In this chapter, we review some introductory knowledge relating to metapopulation models and
our research. The content of this chapter consists of a description of metapopulation, metapop-
ulation terminology, non-spatial metapopulation, spatial metapopulation on lattice and an intro-
duction about spatial model as point pattern dynamics.

1.1 Metapopulation
The metapopulation concept was introduced by Richard Levins in ecological literature in 1969
[25]. Levins formulated a simple model to investigate the basic dynamics properties of metapop-
ulations (Hanski and Gilpin, 1991 [16]). The term metapopulation is given to describe a pop-
ulation of local populations where interactions occur within each local population and among
the local populations. Hence,“the concept of metapopulation is closely connected with the pro-
cesses of population turnover, extinction and establishment of new populations, and the study of
metapopulation dynamics is essentially the study of the conditions under which the extinction
and establishment processes are in balance and the consequences of that balance to associated
processes” (Hanski, 1991 [13]).

Levins’s metapopulation model has provided a conceptual framework for empirical studies
and has served as the starting point of many theoretical analyses (Hanski, 1991 [13]). Studies
of metapopulations relate to the equilibrium theory of island biogeography and studies on the
dynamics of species living in patchy environments or fragmented landscapes, hence have had
important contributions to landscape ecology and conservation biology (Hanski and Gilpin, 1991
[16]; Hanski, 1998 [14]).

There are different types of metapopulation such as classical or Levins metapopulation,
patchy metapopulation, mainland-island or non-equilibrium metapopulation (Harrison and Tay-
lor, 1997 [20]) (Figure 1.1).

4



CHAPTER 1. PREVIOUS STUDIES ABOUT METAPOPULATION 5

Classical (Levins) Patchy

Mainland - island Nonequilibrium

Figure 1.1: Types of metapopulation based on Harrison and Taylor (1997) [20].

Whilst in population studies one focuses on the changes in the number of individuals deter-
mined by births and deaths in the population, in the studies of metapopulation we focus on the
changes in the status of habitat patches or local populations which are driven by extinction and
colonization.

One of typical empirical studies on metapopulations is the large-scale surveys of Glanville
fritillary metapopulation that has been conducted since 1993 in the Åland archipelago in Finland
(Figure 1.2). Glanville fritillary exemplifies a large number of habitat-specialist species with a
metapopulation structure and fast extinction-colonization dynamics in heterogeneous environ-
ments (Hanski, 2011 [15]; van Nouhuys, 2016 [35]).
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Figure 1.2: Map of of the habitat patch network in the Åland Islands (a large network of ap-
proximately 4,000 dry meadows) indicate the relative abundance of Veronica spicata (larval host
species) in the meadows. Circles show the relative abundance of the larva, darker color shows
greater relative abundance of Veronica, gray shading demonstrates land, and the rest is sea. Data
was collected over a period of 18 years from 1993 to 2010 (Hanski, 2011 [15]).

Hanski is well-known for his studies on metapopulation. In Hanski and Gilpin (1991) [16],
metapopulation terminology was given as in Table 1.1 in which metapopulations are considered
as systems of local populations that are connected by dispersing individuals.
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Table 1.1: Metapopulation terminology

Term Synonyms and definition
Patch Synnonyms: Habitat patch, (population) site, locallity

Definition: The area of space within which a local
population lives

Local population Definition: Set of individuals which all interact with
each other with a high probability

Turnover Synonym: Colonization-extinction dynamics

Definition: Extinction of local populations and estab-
lishment of new populations in empty habitat patches
by dispersers from existing local populations

Metapopulation Definition: Set of local populations which interact via
individuals moving among populations

Characteristic time scale of
metapopulation dynamics

Definition: τm = 1/emin, where emin is the lowest ex-
tinction rate among local populations

Metapopulation persistence
time

Synonym: Expected lifetime

Definition: The length of time until all local popula-
tions in a metapopulation have become extinct

Occupancy model Synonyms: Patch model, scalar state model

Definition: A model in which local population size is
ignored and the fraction of habitat patches occupied
is modeled. Levin’s (1969) model is an occupancy
model

Metapopulation structure Synonym: Metapopulation type

Definition: System of habitat patches which is occu-
pied by a metapopulation and which has a certain dis-
tribution of patch sizes and interpatch distances

Structured metapopulation
model

Synonym: Vector state model

Definition: A model in which the distribution of local
population sizes is modeled
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1.2 Non-spatial metapopulation model
A simple model for metapopulation dynamics was provided by Levins in which the proportion
or fraction of occupied patches changes in continuous time according to an ordinary differential
equation model as follows

d
dt

p = cp(1− p)− ep, (1.2.1)

where p is the fraction of occupied patches, c and e are parameters which set the rates of colo-
nization of current empty patches and local extinction of current occupied patches, respectively.
Levins model is equivalent to the logistic growth model; if e < c then the proportion of occupied
patches eventually converges to a positive equilibrium p∗ given as

p∗ = 1− e
c
. (1.2.2)

In Levins model, a single species is considered living in an environment including many
similar habitat patches. The local populations occupying these patches is assumed to have the
size of either 0 (extinct) or K (local carrying capacity). All local populations are of the same,
constant probability of extinction. Local dynamics and the spatial arrangement of patches are
ignored or assumed to have no consequence, that means the movements from an occupied patch
are assumed to be equally likely to all other patches.

The Eq. (1.2.1) given by Levins provides a simple model for metapopulation dynamics.
It is an analogue to the logistic model as a paradigm of local population growth. The Levins
model and the logistic model are indeed structurally similar if we rewrite the Eq. (1.2.1) in the
equivalent form

d
dt

p = (c− e)p

1− p

1− e
c

 . (1.2.3)

The difference c− e hence gives the rate of increase of p in a small metapopulation (when p is
small), whereas 1− e/c is equivalent to local “carrying capacity”, the stable equilibrium point
towards which p moves in time (Hanski and Gilpin, 1991 [16]).

Regarding to the Eq. (1.2.2), although it is simple and obviously limited, it is fundamentally
significant to highlight a key aspect of metapopulation dynamics: a metapopulation persists, for
a given extinction rate, as long as the colonization rate is greater than a threshold value; and for
a given colonization rate, the extinction rate does not exceed a threshold value (Hanski, 1991
[13]).

Levins model is too simple to be directly applied to empirical cases. However, it serves as
a conceptual and baseline model from which various models have been analyzed. For instance,
Brown and Kodric-Brown (1977) [3] focused on “rescue effect” studying how the probability
of local extinction is decreased by immigration. Hanski (1983) [11] studied modifications of
Levins model which allows for a varying difference between the local and regional time scales,
considering that the rate of local extinction depends on the proportion of occupied patches. Han-
ski (1985) [12] extended Levins model alternatively by assuming two types of occupied patches,
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small and large sized, and showed that a small number of large occupied patches can play a cru-
cial role in the dynamics. Hanski (1991) [13] further considered compensatory effects in which
colonization rate and local extinction rate explicitly depend on the degree of isolation and the
area of habitat patches.

In [13], Hanski suggested that

It makes two significant simplifying assumptions in Levins model:
(1) there is no spatial correlation in the status (occupied or not) of habitat patches

(the ‘zero-correlation’ assumption), and
(2) there are only two states, presence and absence (the ‘discrete-state’ assump-

tion with two states).
In reality, spatial correlations in occupancy may arise for two reasons, because

dispersal to a nearby patch is more likely than dispersal to a far-away patch (‘stepping-
stone’ dispersal), and because extinctions due to some common environmental cause
may be spatially correlated.

1.3 Spatial models as lattice models
Based on the previous section, although Levins model serves as a conceptual and baseline model,
it is non-spatial model and too simple to be directly applied to empirical cases and real systems.
As a matter of fact, for more realistic applications, we need to consider some spatial distributions.

As in [32], Sato and Iwasa has emphasized that

Nowadays, the effects of spatial configuration on population and evolutionary
processes have been the subject of intensive research efforts in ecology and evo-
lutionary biology. It is now acknowledged that considering spatio-temporal struc-
tures spontaneously formed by demographic processes and ecological interactions
is sometime essential for understanding population, as well as evolutionary dynam-
ics and that traditional modeling in theoretical ecology assuming complete spatial
mixing often fails to capture these dynamics.

Therefore, we have to model spatial metapopulation dynamics. Using “lattice space” is a simple
and useful method for modeling metapopulation dynamics in a spatially explicit way. Lattice
models are most suitable for metapopulation dynamics of terrestrial plants. Most analyses of
these models have used computer simulations of spatial stochastic processes. The results of
these computational simulations can be compared with those of mean-field approximations, the
traditional models which ignore the spatial structure (Iwasa, 2000 [22]). It is said that mean-field
approximation is a common method for simplifying spatial metapopulation dynamics, which
completely ignores spatial structure by neglecting the correlation between neighboring sites on
the lattice. In this method, local density is assumed to be the same as global density. The mean-
field approximation would become exact when the spatial pattern is random.

Typically we assume a lattice space that is regular such as linear, square or triangular, and
so on, in which a site is located on a vertex or lattice site and connected with a fixed number of
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neighbors sites (Sato et al., 1994 [33]; Iwasa, 2000 [22]; Sato and Iwasa, 2000 [32]). The status
of a site changes stochastically depending on that of its own and neighbor sites. A vacant site
(denoted by 0) is colonized from adjacent occupied sites (denoted by 1) whereas, an occupied
site 1 goes locally extinct to 0. Figure 1.3 illustrates an example of a lattice space with a certain
distribution of vacant and occupied sites.

Figure 1.3: An example of 5×5 square lattice space where 0 and 1 represent empty and occupied
cells, respectively. An empty cell can be occupied by colonization from neighboring occupied
cell(s)

An analytical approach called “pair approximation” has been developed by Matsuda et al. in
1992 [27] in studies of spatial dynamics of populations on lattice. This is a system of ordinary
differential equations yielding average densities and local densities, in which the latter describes
the correlation of states of the nearest neighbor cells. However, lattice space is a discrete space
and the fact that habitat patches are spatially distributed on regular lattice may be too constrained
to apply in real nature.

1.4 Spatial models as point pattern dynamics

1.4.1 Definition of point pattern
A more natural and flexible approach is to use a mapped point pattern, or simply, a “point pattern”
as a collection of points in which a point represents the compositional unit of a population or a
metapopulation, e.g., an individual or a local patch. A point pattern is defined as a set of points
distributed over continuous space in which each point is assigned a status. For example, in epi-
demiological SIS models, each point is either susceptible (S) or infectious (I). In metapopulation
models, each point is either empty (or vacant) or occupied. While neighbors are straightforward
to define for lattice, they are not self-evident for point pattern. Figure 1.4 shows an example of a
point pattern where a focal point is observed.
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Figure 1.4: An example of a point pattern, in which empty points are in blue, occupied points
are in red. The focal blue point i can be occupied from red points j and k with some distance-
dependent colonization rate.

Bolker (1999) [1] presented a new analytical model called moment equations for patchy plant
epidemics in which the spatial dynamics was considered as stochastic point pattern dynamics.
The point pattern approach is shown to be a more natural and general approach to represent a
spatial configuration of a metapopulation. A point pattern is considered as consisting of a specific
number of points which represent patches on a continuous space. The locations of points defined
in two (or three) dimensional space illustrate the spatial configuration of the metapopulation.
In order to model metapopulation dynamics we assign each point a status that is either empty
(or vacant) or occupied. The same as previous studies relating to lattice models, we focus on a
singlet (or a point) and a pair made by two points. However, in the point pattern approach we
consider local interactions based on the distance(s) between points with a focal point rather than
defining its neighbor points.

1.4.2 Qualification of a point pattern
Any point pattern consisting of n points in two-dimensional space is uniquely represented as
a “point” in 2n dimensional space regarding to coordinates of points. For status space, if each
point is assigned either empty or occupied in metapopulation model, for example, then we have to
work with a 2n dimensional space. It is intractable to directly deal with such a high dimensional
space as the number of points n increases, especially it is too large in our research as n = 1000.
Fortunately, a new departure in spatial ecology has been introduced to approximate the dynamics
of spatial configuration densities in which any point pattern can be characterized using spatial
configuration densities that describe the densities of points, pairs, triplets, etc. As the number
of points defining such configurations increases (points: 1; pairs: 2; triplets: 3; etc.), successive
orders of a spatial point pattern’s information are revealed (Kaito et al., 2015 [23]).
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The singlet density describes its first (1st) order structure by the density of points, i.e., by
the number of points divided by the area over which they are distributed. Although the singlet
density accounts for the abundance of points in a pattern, it is obviously unable to capture any
information about how these points are distributed over space. Therefore, the higher-order spatial
structure of the pattern has to be considered. Specifically, we need to deal with the second (2nd)
order structure of the point pattern that is defined by the densities of pair configurations in order
to capture the information about local crowdedness (clustering, aggregation) of points in that
pattern. Figure 1.5 demonstrates how we can qualify a point pattern by the number of points,
pairs and triplets.

Figure 1.5: Qualification of a point pattern.

A point pattern’s pair density is defined as the spatial density of pairs of points dependent on
the vector that describes their displacement. In a sufficiently large isotropic point pattern, which
exhibits no bias for any particular direction, the density of pairs is uniquely determined by the
distance between them. For such patterns, measuring distances among pairs and establishing
the distribution of those inter-point distances across all pairs therefore suffices to characterize a
pattern’s 2nd order structure. More specifically, the degree of clustering of points can be esti-
mated by the following definitions. A pattern is called over-dispersed or regular, if it exhibits a
shortage of pairs at short distances, while it is called clustered when it possesses an excess of
short-distance pairs. By concentrating on intraspecific (interspecific) pairs formed by two indi-
viduals belong to the same (or different) species, salient features of intraspecific (interspecific)
interactions at local spatial scale can be inferred.

In [23], Kaito et al. asserted that:

In spatial ecology, measuring the first- and second-order structure (i.e., the sin-
glet and pair densities) of point patterns has been a major interest. Approaches
focusing on pairs have been established as powerful tools for quantifying key char-
acteristics of observed point patterns and for unveiling local biological processes
underlying such patterns. In tropical forest studies, in particular, these approaches
have been successfully applied, providing novel insights about local ecological inter-
actions such as neighborhood competition between trees (Condit, 1998). In response
to the resultant increased needs for spatial point-pattern analyses, convenient statis-
tical libraries such as “spatstat” (http://www.spatstat.org/spatstat/) are available in R
(http://www.R-project.org/) to analyze the second-order structure of point patterns.
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Figure 1.6: Point patterns and corresponding total pair correlation function.
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In order to describe the 2nd order structure of the point pattern, we calculate the relative pair
correlation function for pairs with a certain pair distance as below. From a snapshot of a point
pattern, we count the number of pairs whose pair distance falls within a bin with bin width ∆r.
Let #(i) denote the number of pairs in the i-th bin. Then we calculate the total pair correlation
function as a function of the distance r representing the i-th bin ri = ∆r/2+ i×∆r is given as
follows

g(ri) =
#(i)

2πrin(n−1)∆r
. (1.4.1)

On this basis, in Figure 1.6 we show the total pair correlation functions for three types of point
pattern called over-dispersed point pattern, complete spatial randomness (or CSR) and clumped
point pattern which have been used in many previous studies (we are going to explain in more
detail in the next chapter).



Chapter 2

The Model

In this chapter, we explain how we conduct a spatial metapopulation model as a point pattern
dynamics. Our study stems from Hamada and Takasu (2019) [10] that extended the classical
epidemic SIS model as a stochastic point pattern dynamics. Epidemic dynamics and metapopu-
lation dynamics go parallel in the sense that a susceptible S (empty patch) becomes infectious I
(occupied) by infection (colonization) from another infectious individual(s) and an infectious one
recovers to susceptible (local extinction). Hamada and Takasu (2019) [10] studied how infection
spread over a point pattern with distance-dependent local infection rate and derived equilibrium
properties in terms of singlets and pairs. Applying the same method, we study spatial metapop-
ulation dynamics as a point pattern dynamics with both local and global colonization explicitly
considered. We also study the probability of total extinction of the metapopulation starting from
one occupied patch.

2.1 Stochastic simulations
We first implement our spatial metapopulation dynamics as a stochastic point pattern dynamics.
Let us assume a metapopulation that consists of a constant n patches, each being represented as
a point in the two dimensional unit space Ω = [0,1)× [0,1) with a certain spatial configuration.
We assume that Ω is torus with periodic boundary to exclude boundary effects. The location of
the i-th point is represented by the two-dimensional vector xi (i = 1,2, · · · ,n) in Ω. The point
pattern {x1,x2, · · · ,xn} has been configured according to the pair correlation function or the radial
distance distribution g(r) where r is the pair-distance. We assume the following three types of
point pattern (Figure 2.1):

• An over-dispersed point pattern when g(r)< 1 for short distanced pairs r� 1,

• Complete spatial randomness (hereafter CSR) with g(r) = 1 for all r,

• A clumped point pattern with g(r)> 1 for short distanced pairs r� 1.

15
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Complete Spatial Randomness (CSR) Clumped Point PatternOver-dispersed point pattern

Figure 2.1: Baseline point patterns.

With respect to these three types of point pattern in study, our metapopulation model has a
structure, in other words, our spatial model is a kind of structured metapopulation model. Then
we assign each point a status either 0 (empty or vacant) or 1 (occupied) and the status changes
stochastically in continuous time with colonization and local extinction; a point 0 becomes 1 by
colonization and point 1 becomes 0 by local extinction. Thus, our model is also considered as an
occupancy model.

We assume that colonization occurs both locally and globally. In local colonization, the
distance(s) between a focal empty site and occupied site(s) plays a key role, while in global
colonization, distance does not matter. We assume that the colonization rate c(d) is a function of
distance d between a focal point 0 and a point 1 is given as follows

c(d) = (1− p)cl(d)+ pcg, (2.1.1)

where p is the proportion of global colonization (0 ≤ p ≤ 1), cl(d) and cg is the local and the
global colonization rate, respectively.

The local colonization rate cl(d) is further decomposed as follows

cl(d) = cl0k(d), (2.1.2)

where cl0 is the total strength of local colonization and k(d) is the local colonization kernel that
represents how it depends on distance d.

We assume the following two types of local colonization kernels which are Gaussian and
Step-function kernels (Figure 2.2)

k(d) =
1

2πσ2
c

exp
[
− d2

2σ2
c

]
, (2.1.3)

k(d) =


1

4πσ2
c

if d ≤ 2σc

0 if d > 2σc,
(2.1.4)

which have been normalized such that integration over the space Ω is 1,∫
Ω

k(|ξ |)dξ = 1. (2.1.5)
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These two kernels have been further normalized so that they have the same effective area of
local colonization A = 4πσ2

c (Bolker, 1999 [1]; Brown and Bolker, 2004 [2]; Wright, 1946 [36])
defined as

A =

(∫
Ω

[k(|ξ |)]2dξ

)−1

. (2.1.6)

Local colonization range

Figure 2.2: The colonization/infection kernel k(d) as a function of distance d is shown. Blue and
red lines show Gaussian and Step-function respectively.

The Gaussian colonization kernel (2.1.3) assumes that local colonization occurs as a random
diffusion process with the parameter σc > 0 controlling the range of local colonization. The Step
function kernel (2.1.4) assumes that local colonization rate remains constant within the radius
2σc and no local colonization occurs beyond the radius. We choose this kernel as an example of
colonization that decays more rapidly with distance than the Gaussian kernel.

Let O denote the set of points whose status is 1 or occupied. Using the colonization rate c(d)
defined above, we define the colonization rate with which the point i in 0 becomes 1 as

Ratei(0→ 1) = ∑
j∈O

c(di j), (2.1.7)

where di j is metric distance between the point i and j (di j = |xi−x j|) and summation is taken for
point j whose status is 1. Note that the colonization rate above is defined only for points in 0.

We assume that an occupied patch becomes empty by local extinction with a constant rate.
We define

Ratei(1→ 0) = e, (2.1.8)

where e is local extinction rate. Note again that the local extinction rate is defined only for points
in 1. In addition, 1/e is considered as turnover rate or the mean period occupied status. Also, as
the local extinction rate is assumed to be constant and equal to 1, the characteristic time scale of
the metapopulation dynamics is unit time 1.
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Initially we generate a baseline point pattern with n points whose pair correlation function is
given as g(r) = 1+ae−br where the parameters a and b > 0 control its functional form; a = 0 for
CSR, a > 0 for clumped point pattern, and a < 0 for over-dispersed point pattern and b controls
the degree of clumpedness and over-dispersedness (Figure 2.3) (Hamada and Takasu, 2019 [10]).
To generate such a point pattern we use Metropolis-Hasting algorithm (Kaito et al., 2015 [23]).
We then introduce one occupied 1 patch randomly chosen among empty 0 patches. We update
each point status using Gillespie algorithm (Gillespie, 1976 [9]).

g(r)

r

Clumped

Over-dispersed

CSR

Figure 2.3: Pair correlation function, g(r) = 1+aexp(−br); CSR (g(r) = 1) ;
over-dispersed (g(r) = 1− exp(−80r))< 1); and clumped (g(r) = 1+0.7exp(−80r)> 1).

In order to quantify the point pattern, we study the 1st order and 2nd order structure of the
point pattern. Regarding to the 1st order, we calculate the number or the proportion of occupied
points (1s) and empty points (0s). As the 1st order structure is not adequate for describing
how 1s and 0s are spatially distributed over space, we need to consider the 2nd order structure
which study the pair correlation function or the radial distance distribution as the distribution of
distances in pair made by two points (Dale and John, 1999[6]; Diggle, 2003 [8]; Levin, 1992
[24]; Liebhold and Gurevitch, 2002 [26]; Turner, 1989 [34]). To describe the 2nd order structure
of the point pattern, we follow the same definition of relative pair correlation functions for four
status of pairs (Hamada and Takasu, 2019 [10]) with a certain pair distance as below.

For a snapshot of a point pattern, we count the number of pairs whose pair distance falls
within a bin with bin width ∆r. We denote #11(i),#10(i),#01(i), and #00(i) as the number of
directed pairs 1-1, 1-0, 0-1, and 0-0 in the i-th bin, respectively. Note that #10(i) = #01(i). Then
we calculate relative pair correlation functions for the four types of pairs. E.g., for 1-1 pairs,
g11(r) as a function of the distance r representing the i-th bin ri = ∆r/2+ i×∆r is given as
follows

g11(ri) =
#11(i)

2πrin(n−1)∆r
. (2.1.9)
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Relative pair correlation functions for pairs 1-0, 0-1, and 0-0, g10(ri),g01(ri), and g00(ri), are
derived similarly. Since the pair correlation function g(r) represents the spatial distribution of
the point pattern in use (for example, g(r) = 1 corresponds to CSR), the relative pair correlation
functions defined as above illustrates how points 1s and 0s are distributed over space. Note that
g(r) = g11(r)+g10(r)+g01(r)+g00(r).

Without loss of generality, we set cl0 = cg. In the absence of global colonization rate p = 0,
our model is reduced to the model of Hamada and Takasu (2019) [10].

2.2 Dynamics of Singlet and Pair Probabilities
In this section, we derive the dynamics that describes the stochastic point pattern dynamics in
terms of singlets and pairs. Let Pi0(t) and Pi1(t) denote the probability that the point i is in
0 and 1 at time t, respectively, and we call them singlet probabilities (Pi0(t) +Pi1(t) = 1 for
i = 1,2, · · · ,n). In addition, we define the average (mean-field) singlet probabilities

〈P0〉=
1
n

n

∑
i=1

Pi0, 〈P1〉=
1
n

n

∑
i=1

Pi1 (2.2.1)

as the proportion of empty and occupied patches.

When we choose two points i and j ( j 6= i), we have a directed pair i- j represented by the
vector ξi j = x j− xi with the distance di j = |ξi j|. We denote the probability that the directed pair
i- j is in status 0-0, 0-1, 1-0, and 1-1 at time t by Pi j00(t),Pi j01(t),Pi j10(t) and Pi j11(t), respectively
and call them pair probabilities (Pi j00(t)+Pi j01(t)+Pi j10(t)+Pi j11(t) = 1 for i 6= j).

Since each point can be in one of two status 0 and 1, there are four types of status for a directed
pair i and j ( j 6= i) which are 1-1, 1-0, 0-1 and 0-0. Using the transition diagram of singlets and
pairs in Figure 2.4 we derive the singlet dynamics. Because Pi0 +Pi1 = 1, we hereafter focus on
the dynamics of Pi1. The singlet dynamics of the point i is given as follows (Hamada and Takasu,
2019 [10])

d
dt

Pi1 =−ePi1 +(1− p)∑
j 6=i

cl(di j)Pi j01 + pcg ∑
j 6=i

Pi j01 (2.2.2)

for i = 1,2, · · · ,n.
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Figure 2.4: Transition Diagram. Empty (0) points are in blue, occupied (1) points are in red.

On the right hand side of Eq. (2.2.2), the first term represents the local extinction that is
assumed to occur with the constant rate e. The second term represents the local colonization
depending on distance(s) from occupied patches; the point i in 0 is colonized locally from the
point j in 1 with the local colonization rate (1− p)cl(di j) summed over all possible j 6= i. The
last term represents the global colonization that has been assumed distance-independent. In
Eq. (2.2.2), however, this distance-independency of global colonization is not satisfied because
Pi j01 = Pi0Pj1|i0 6= Pi0Pj1 in general where Pj1|i0 is conditional probability: the point j is 1 condi-
tional on that the point i is 0. This inconsistency can be safely handled by decoupling the point i
and j by setting Pj1|i0 = Pj1 because the last term as global colonization assumes no correlation
between the two points i and j. Then, we apply the following approximation

∑
j 6=i

Pi j01 = ∑
j 6=i

Pi0Pj1|i0 = Pi0 ∑
j 6=i

Pj1 ≈ Pi0(n−1)〈P1〉 ≈ nPi0〈P1〉

for n being large enough.
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Finally we obtain the singlet dynamics

d
dt

Pi1 =−ePi1 +(1− p)∑
j 6=i

cl(di j)Pi j01 + pcgn〈P1〉Pi0 (2.2.3)

for i = 1,2, · · · ,n and the mean-field singlet dynamics

d
dt
〈P1〉=−e〈P1〉+(1− p)

1
n

n

∑
i=1

∑
j 6=i

cl(di j)Pi j01 + pcgn〈P0〉〈P1〉. (2.2.4)

Note that the classical Levins model (Levins, 1969 [25]) can be obtained when we set p = 1 in
the Eq. (2.2.4).

The singlet dynamics contains the pair probability Pi j01. We next derive the dynamics of
the pair probabilities. Using the approach of Hamada and Takasu (2019) [10] and the transition
diagram as in Figure 2.4, the dynamics of the pair probabilities Pi j00,Pi j01,Pi j10, and Pi j11 are
given as follows

d
dt

Pi j00 =− (1− p) ∑
k 6=i, j

cl(dik)Pi jk001− (1− p) ∑
k 6=i, j

cl(d jk)Pi jk001−2pcgn〈P1〉Pi j00

+ ePi j01 + ePi j10,

(2.2.5)

d
dt

Pi j01 =− (1− p) ∑
k 6=i, j

cl(dik)Pi jk011 +(1− p) ∑
k 6=i, j

cl(d jk)Pi jk001 + pcgn〈P1〉Pi j00

− pcgn〈P1〉Pi j01− (1− p)cl(di j)Pi j01− pcgPi j01− ePi j01 + ePi j11,

(2.2.6)

d
dt

Pi j10 =(1− p) ∑
k 6=i, j

cl(dik)Pi jk001− (1− p) ∑
k 6=i, j

cl(d jk)Pi jk101 + pcgn〈P1〉Pi j00

− pcgn〈P1〉Pi j10− (1− p)cl(di j)Pi j10− pcgPi j10− ePi j10 + ePi j11,

(2.2.7)

d
dt

Pi j11 =(1− p) ∑
k 6=i, j

cl(dik)Pi jk011 +(1− p) ∑
k 6=i, j

cl(d jk)Pi jk101

+(1− p)cl(di j)Pi j01 + pcgPi j01 +(1− p)cl(di j)Pi j10 + pcgPi j10

+ pcgn〈P1〉Pi j01 + pcgn〈P1〉Pi j10−2ePi j11.

(2.2.8)

Taking the dynamics of Pi j11 as an example, Eq.(2.2.8) describes how a pair 1-1 is generated
or lost; a pair 1-1 is newly generated from a pair 1-0 or 0-1 by colonization; the point 0 in the
pair is colonized by a third party point k 6= i, j in 1 or by within-pair colonization, and is lost by
local extinction in the pair. Therefore, the pair dynamics involves triplet probabilities; Pi jk001,
Pi jk011, and Pi jk101 are the probabilities that the triplet i- j-k (i 6= j 6= k) is in status 0-0-1, 0-1-1,
and 1-0-1, respectively.

It should be noted that the singlet and the pair dynamics derived above apparently do not
depend on spatial configuration of the point pattern used (CSR, clumped, or over-dispersed) and
thus the pair correlation function g(r) of the baseline point pattern is not explicitly involved.
However, the dynamics does depend on g(r) through summation of local colonization for pairs
and triplets as shown later.
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The singlet and the pair dynamics are not self-contained; triplet probabilities appear in the
dynamics. To close the dynamics, we need to assume triplet probabilities to be approximated by
lower order singlet and pair probabilities. We adopt the following simple closures (Dieckmann
and Law, 2000 [7], Hamada and Takasu, 2019 [10]) because these allow us to derive equilibrium
pair probabilities analytically.

Pi jk001 =
Pi j00Pik01

〈P0〉
for the point i as pivot,

Pi jk001 =
Pji00Pjk01

〈P0〉
=

Pi j00Pjk01

〈P0〉
for the point j as pivot,

Pi jk011 =
Pi j01Pik01

〈P0〉
for the point i as pivot,

Pi jk101 =
Pji01Pjk01

〈P0〉
=

Pi j10Pjk01

〈P0〉
for the point j as pivot.

(2.2.9)

In the above closures, we focus on a focal point whose status changes from 0 to 1 in a
triplet. The triplet is then viewed from the focal point as “pivot” and we approximate the triplet
probability using two pair probabilities stemming from the focal point and the mean-field singlet
probability of the focal point (Figure 2.5).

Figure 2.5: Triplet probabilities are approximated by coupled pair probabilities using moment
closure with the consideration of focal point.

For example, in the summation ∑k 6=i, j c(dik)Pi jk001 in the pair dynamics, the point i is consid-
ered as pivot and we have

∑
k 6=i, j

cl(dik)Pi jk001 = ∑
k 6=i, j

cl(dik)
Pi j00Pik01

〈P0〉

=
Pi j00

〈P0〉 ∑
k 6=i, j

cl(dik)Pik01.
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Whereas, in the summation ∑k 6=i, j cl(d jk)Pi jk001, j is pivot and we have

∑
k 6=i, j

cl(d jk)Pi jk001 = ∑
k 6=i, j

cl(d jk)Pjki010

= ∑
k 6=i, j

cl(d jk)
Pji00Pjk01

〈P0〉

=
Pi j00

〈P0〉 ∑
k 6=i, j

cl(d jk)Pjk01.

Similarly, we have

∑
k 6=i, j

cl(dik)Pi jk011 =
Pi j01

〈P0〉 ∑
k 6=i, j

cl(dik)Pik01,

∑
k 6=i, j

cl(d jk)Pi jk101 =
Pi j10

〈P0〉 ∑
k 6=i, j

cl(d jk)Pjk01.

Substituting the closures Eqs. (2.2.9) to the dynamics of pair probabilities Eq.(2.2.5) through
Eq.(2.2.8), and setting the time derivative zero, we obtain the following equations from which
equilibrium pair probabilities can be solved

0 =
d
dt

Pi j00 =

[
−1− p
〈P0〉

(
∑

k 6=i, j
cl(dik)Pik01 + ∑

k 6=i, j
cl(d jk)Pjk01

)
−2pcgn〈P1〉

]
Pi j00

+ ePi j01 + ePi j10,

(2.2.10)

0 =
d
dt

Pi j01 =

[
1− p
〈P0〉 ∑

k 6=i, j
cl(d jk)Pjk01 + pcgn〈P1〉

]
Pi j00 + ePi j11

+

[
−(1− p)
〈P0〉 ∑

k 6=i, j
cl(dik)Pik01− e− (1− p)cl(di j)− pcg− pcgn〈P1〉

]
Pi j01,

(2.2.11)

0 =
d
dt

Pi j10 =

[
1− p
〈P0〉 ∑

k 6=i, j
cl(dik)Pik01 + pcgn〈P1〉

]
Pi j00 + ePi j11

+

[
−1− p
〈P0〉 ∑

k 6=i, j
cl(d jk)Pjk01− e− (1− p)cl(di j)− pcg− pcgn〈P1〉

]
Pi j10,

(2.2.12)

0 =
d
dt

Pi j11 =

[
1− p
〈P0〉 ∑

k 6=i, j
cl(dik)Pik01 +(1− p)cl(di j)+ pcg + pcgn〈P1〉

]
Pi j01

+

[
1− p
〈P0〉 ∑

k 6=i, j
cl(d jk)Pjk01 +(1− p)cl(di j)+ pcg + pcgn〈P1〉

]
Pi j10−2ePi j11.

(2.2.13)
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Here, we approximate the terms ∑k 6=i, j cl(dik)Pik01 and ∑k 6=i, j cl(d jk)Pjk01 with the mean-field
value

∑
k 6=i, j

cl(dik)Pik01 ≈
1
n

n

∑
i=1

∑
k 6=i

cl(dik)Pik01,

∑
k 6=i, j

cl(d jk)Pjk01 ≈
1
n

n

∑
j=1

∑
k 6= j

cl(d jk)Pjk01.

(2.2.14)

And using the equilibrium condition of the singlet dynamics

0 =
d
dt
〈P1〉=−e〈P1〉+(1− p)

1
n

n

∑
i=1

∑
j 6=i

cl(di j)Pi j01 + pcgn〈P0〉〈P1〉, (2.2.15)

we have
1
n

n

∑
i=1

∑
j 6=i

cl(di j)Pi j01 =
1

1− p
[e〈P1〉− pcgn〈P0〉〈P1〉] . (2.2.16)

From Eq.(2.2.14) and Eq.(2.2.16) we get

∑
k 6=i, j

cl(dik)Pik01 ≈
1

1− p
[e〈P1〉− pcgn〈P0〉〈P1〉] ,

∑
k 6=i, j

cl(d jk)Pjk01 ≈
1

1− p
[e〈P1〉− pcgn〈P0〉〈P1〉] .

Hence the equations for deriving the equilibrium of pair probabilities can be simplified in
matrix and vector notation as follows

A


Pi j00
Pi j01
Pi j10
Pi j11

=


0
0
0
0

 , (2.2.17)

in which A is a 4×4 matrix

−2e
〈P1〉
〈P0〉

e e 0

e
〈P1〉
〈P0〉

−e− (1− p)cl(di j)− pcg− e
〈P1〉
〈P0〉

0 e

e
〈P1〉
〈P0〉

0 −e− (1− p)cl(di j)− pcg− e
〈P1〉
〈P0〉

e

0 (1− p)cl(di j)+ pcg + e
〈P1〉
〈P0〉

(1− p)cl(di j)+ pcg + e
〈P1〉
〈P0〉

−2e


.

(2.2.18)
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The matrix A is singular and Eq.(2.2.17) has no unique solution. But all pair probabilities
have to sum up to one and we obtain the equilibrium pair probabilities for all pairs i- j (i 6= j) as
shown in Eq.(2.2.19) through Eq.(2.2.22) as follows

Pi j00 =
e〈P0〉2

e+[(1− p)cl(di j)+ pcg]〈P0〉〈P1〉
= P00(di j), (2.2.19)

Pi j01 =
e〈P0〉〈P1〉

e+[(1− p)cl(di j)+ pcg]〈P0〉〈P1〉
= P01(di j), (2.2.20)

Pi j10 =
e〈P1〉〈P0〉

e+[(1− p)cl(di j)+ pcg]〈P0〉〈P1〉
= P10(di j), (2.2.21)

Pi j11 =
e〈P1〉2 +[(1− p)cl(di j)+ pcg]〈P0〉〈P1〉

e+[(1− p)cl(di j)+ pcg]〈P0〉〈P1〉
= P11(di j). (2.2.22)

where di j is the distance between the point i and j.
However, the mean-field singlet probabilities 〈P0〉 and 〈P1〉 have not been determined yet.

Substituting Eq. (2.2.20) to Eq. (2.2.16), we get

− e〈P1〉+ pcgn〈P0〉〈P1〉+
1− p

n

n

∑
i=1

∑
j 6=i

cl(di j)
e〈P0〉〈P1〉

e+[(1− p)cl(di j)+ pcg]〈P0〉〈P1〉
= 0. (2.2.23)

The double summation for j 6= i and for i in Eq. (2.2.23) can be replaced with the summation
for all directed pairs (i 6= j) as di j = |ξi j|= |ξm| indexed by m = 1,2, · · · ,n(n−1). Rearranging
this equation, we obtain an equation to solve the equilibrium mean field singlet probability 〈P1〉
as follows

1 =
p
e

cgn〈P0〉+
1− p

n

n(n−1)

∑
m=1

cl(dm)〈P0〉
e+[(1− p)cl(dm)+ pcg]〈P0〉〈P1〉

. (2.2.24)

The distribution of the distances in pairs r = |ξm| = dm is proportional to 2πrg(r) and the
total number of directed pairs is n(n−1). Hence, Eq. (2.2.24) can be approximated as

1≈ p
e

cgn(1−〈P1〉)+(1− p)(n−1)
∫

∞

0

cl(r)(1−〈P1〉)
e+[(1− p)cl(r)+ pcg](1−〈P1〉)〈P1〉

2πrg(r)dr.

(2.2.25)
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The right hand side of Eq. (2.2.25) is a function of averaged singlet probability 〈P1〉, saying
function F . It is a monotonically decreasing function of 〈P1〉

F(〈P1〉) =
p
e

cgn(1−〈P1〉)+(1− p)(n−1)
∫

∞

0

cl(r)(1−〈P1〉)
e+[(1− p)cl(r)+ pcg](1−〈P1〉)〈P1〉

2πrg(r)dr

(2.2.26)
with F(1) = 0.

Figure 2.6: Solving Eq. (2.2.25) graphically in which the black line shows the line y = 1 and the
blue curve is the graph of the function F(〈P1〉) when g(r) = 1.

Figure 2.6 illustrates an example of the function F against averaged singlet probability 〈P1〉
in which F(0) > 1. The graph indicates that the equilibrium averaged singlet probability 〈P1〉
can be solved uniquely. Thus, when F(0) > 1, there exists a unique solution 〈P1〉 > 0 but this
could be solved only numerically.

From the Eq. (2.2.26), we can say that F(〈P1〉) is a monotonically decreasing function of
〈P1〉 that involves the summation of colonization for all pairs 0-1 and 1-0 and hence the pair
correlation function g(r).

For p = 0, the derived equilibrium pair probabilities become identical to those in Hamada
and Takasu (2019) [10].

A baseline point pattern (CSR, clumped, over-dispersed) has been configured with the pair
correlation function g(r) that measures the abundance of pairs. Therefore, the realized abundance
of the four types of pairs are given by multiplying the equilibrium pair probabilities with g(r).
Now we have solved equilibrium singlet and pair probabilities using the moment closure and
some approximations. The accuracy of the approximations is tested by simulations in the next
section.



Chapter 3

Results

In this chapter, we show and compare the results of simulation and analytically derived singlet
and pair probabilities at equilibrium applying point process approach. The results are illustrated
based on the colonization kernels which are Gaussian and Step function, and three type of base-
line point patterns including CSR, clumped and over-dispersed point patterns.

3.1 Examples of the point pattern dynamics

t = 0 t = 2 t = 10 t = 100

Proportion of
global colonization

p = 0

Proportion of
global colonization

p = 0.1

Figure 3.1: Temporal change of the point pattern on CSR (g(r) = 1) with Gaussian kernel.
Snapshots at t = 0,2,10,100 are shown from left to right column. The first row shows snapshots
when there is only local colonization (p = 0). The second row shows those when the proportion
of global colonization p = 0.1. Empty patches are shown in blue, occupied patches are shown
in red with radius 2σc of the effective area of the local colonization kernel. Parameters are
σc = 0.01,n = 1000,cl0 = cg = 0.01,e = 1.

27
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Figure 3.1 illustrates simulation examples on a CSR point pattern (g(r) = 1) with Gaussian
kernel. Without loss of generality, time t has been scaled so that the extinction rate is set e = 1.
Initially, one randomly chosen patch is set occupied (red point). Occupied patches expand either
by local or global colonization. Without global colonization (p = 0), occupied patches expand
only locally and very slowly because the range of local colonization is set small (σc = 0.01).
When we allow a small proportion of global colonization (p= 0.1) with σc = 0.01, empty patches
that are far away from occupied patches can be colonized and occupied patches spread over the
entire space much faster than the case of p = 0.

Figure 3.2 shows dynamics of the proportion of empty and occupied patches as the 1st order
structure of the point pattern. Starting from one occupied patch initially introduced, total extinc-
tion is possible by chance when all patches become empty in the stochastic point pattern dynam-
ics. To explore the stochastic behaviors, we ran 100 realizations then calculated the average and
standard deviation of the proportion of empty and occupied patches for realizations when total
extinction does not occur. With the Gaussian kernel when there is no global colonization (p = 0)
and the range of local colonization is set small (σc = 0.01), occupied patches are very slow to ex-
pand over space and variations among realizations are quite large compared with the cases with
a larger range of local colonization σc = 0.02 and/or a global colonization p = 0.1. Except the
case with only local colonization (p = 0) and small range of local colonization (σc = 0.01), the
proportion of empty and occupied patches nearly converges to the equilibrium mean-field singlet
probabilities 〈P0〉 and 〈P1〉, respectively. With the Step-function kernel for the case p = 0 and
σc = 0.01, occupied patches do not spread in almost all realizations because no local colonization
is possible beyond 2σc. For the case p = 0 and σc = 0.02, occupied patches can spread but the
proportion of occupied patches show a large variance among realizations because the location of
an initially introduced occupied patch critically affects spatial expansion. Allowing global colo-
nization p = 0.1, however, results in a good match with analytically derived equilibrium singlet
probabilities.
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Figure 3.2: Temporal change of the proportions of empty and occupied patches on CSR with
Gaussian and Step function kernel. Average and standard deviation are shown in thick solid
curves and in shaded regions, respectively. Equilibrium mean-field singlet probability 〈P0〉 and
〈P1〉 is shown in green and black horizontal lines, respectively. The top two figures are for only
local colonization p = 0 and the bottom for a global colonization p = 0.1. The left and right
column is σc = 0.01 and σc = 0.02, respectively. Note the time span of the case of Gaussian
kernel with p = 0 and σc = 0.01. Other parameters are the same as in Figure 1: n = 1000,cl0 =
cg = 0.01,e = 1.
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Figure 3.3 shows dynamics of the proportions of empty and occupied patches as the 1st or-
der structure of the clumped point pattern with Gaussian and Step function kernels. We ran 100
realizations and calculated the average and standard deviation of the proportion of empty and
occupied patches for realizations when total extinction does not occur. In the case of Gaussian
kernel, when there is no global colonization (p = 0) and the range of local colonization is set
small (σc = 0.01), occupied patches are slow to expand over space. The variation among the re-
alizations for that case is large compared with the cases with a larger range of local colonization
σc = 0.02 and/or a global colonization p = 0.1. Except the case with only local colonization
(p = 0) and small range of local colonization (σc = 0.01), the proportion of empty and occu-
pied patches nearly converges to the equilibrium mean-field singlet probabilities 〈P0〉 and 〈P1〉,
respectively. Contrary in the case of Step function kernel, when there is only local colonization
(p = 0) the simulation results and derived analytical equilibrium results are totally different in
both cases of σc = 0.01 and σc = 0.02. For p = 0 and σc = 0.01, occupied patches do not spread
at all. This is because the range of local colonization is too small so that occupied patches do
not spread to empty patches in neighbors. For p = 0 and σc = 0.02, variation among realizations
is very high. This is because occupied patches do not spread at all in some realizations if an
initially introduced one occupied patch has no empty patches around it within 2σc, but occupied
patches spread if the initial occupied patch has empty patches within 2σc. Introduction of a small
proportion of global colonization p= 0.1 results in a better match between simulation results and
the analytically derived equilibrium.

Figure 3.4 demonstrates the dynamics of the proportions of empty and occupied patches
as the 1st order structure on the over-dispersed point pattern with Gaussian and Step function
kernels. For the Gaussian kernel, occupied patches expand over space more slowly compared
with the case on the clumped point pattern. For the Step-function kernel, occupied patches do
not spread at all. On the over-dispersed point pattern, points are spatially configured similar to
regular lattice, i.e., there exists few short-distanced pairs and points tend to be separated. This
leads to slower expansion under the Gaussian kernel and no expansion under the Step function
kernel. However, if we allow global colonization or increase the range of local colonization
σc, occupied patches expand over space and simulation results agree well with the analytically
derived equilibrium.
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Figure 3.3: Temporal change of the proportions of empty and occupied patches on a clumped
point pattern with Gaussian kernel and Step function kernel. The clumped point pattern has the
pair correlation function g(r) = 1+ae−br with a = 1,b = 80. Average and standard deviation are
shown in thick solid curves and in shaded regions, respectively. Equilibrium mean-field singlet
probabilities 〈P0〉 and 〈P1〉 are shown in green and black horizontal lines, respectively. The top
four figures are for the Gaussian kernel and the bottom for the Step function kernel. The left and
right column is σc = 0.01 and σc = 0.02, respectively.
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Figure 3.4: Temporal change of the proportions of empty and occupied patches on an over-
dispersed point pattern with Gaussian kernel and Step function kernel. The over-dispersed point
pattern has the pair correlation function g(r) = 1+ ae−br with a = −1,b = 80. Average and
standard deviation is shown in thick solid curves and in shaded regions, respectively. Equilibrium
mean-field singlet probabilities 〈P0〉 and 〈P1〉 are shown in green and black horizontal lines,
respectively. The top four figures are for the Gaussian kernel and the bottom for the Step function
kernel. The left and right column is σc = 0.01 and σc = 0.02, respectively.
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Figure 3.5 demonstrates the relative pair correlation functions obtained in simulations and
the equilibrium pair abundances that have been analytically derived on CSR point pattern with
Gaussian kernel and Step function kernel. We ran 100 realizations then calculated average and
standard deviation of each of the three relative pair correlation functions for realizations when
total extinction does not occur. With the Gaussian kernel for the case with p = 0 and σc = 0.01,
occupied patches do not spread over the entire space in many realizations and variation among
realizations is quite large. Simulation results are very different from the analytically derived
pair abundances. However, we see that occupied patches tend to be locally clustered and that
occupied and empty patches tend to separate each other because the pair correlation function
becomes larger for the short distanced 1-1 pairs. On the other hand, empty and occupied patches
tend to be separated because pair correlation function for 0-1 (1-0) pairs becomes smaller for
the short distance. For other cases with p = 0.1 or σc = 0.02, variation among realizations is
small and this tendency becomes clearer. All of the relative pair correlation functions are both
qualitatively and quantitatively similar to the equilibrium pair abundances analytically derived
from the singlet and the pair dynamics for the cases with p = 0.1 or σc = 0.02. With the Step
function kernel, except the case with p = 0 and σc = 0.01 in which occupied patches do not
spread at all in most realizations, occupied patches tend to be spatially clustered. However, this
tendency becomes less clear if we allow a global colonization p = 0.1 compared with the cases
of the Gaussian kernel (cf. two figures for p = 0.1 and σc = 0.02). Analytically derived equilib-
rium pair abundances qualitatively match with the relative pair correlation functions obtained in
simulation.

Figure 3.6 illustrates the relative pair correlation functions obtained in simulations on the
clumped point pattern and the analytically derived equilibrium pair abundances with Gaussian
kernel and Step function kernel. We ran 100 realizations and calculated the average and standard
deviation of the three relative pair correlation functions for realizations when total extinction does
not occur. With the Gaussian kernel, for the case with p = 0 and σc = 0.01, occupied patches do
not spread over the entire space and variation among realizations is large. Although simulation
results are very different from the analytically derived relative pair correlation functions, we see
that occupied patches tend to be locally clustered while occupied and empty patches tend to sep-
arate each other. For p = 0.1 or σc = 0.02, simulation results match well with the analytically
derived relative pair correlation functions. When p = 0 in the case of the Step function kernel,
occupied patches do not spread at all for σc = 0.01 but they spread for σc = 0.02. Although sim-
ulation results and analytically derived relative pair correlation function do not match, occupied
patches tend to be locally clustered with the same spatial scale. If we allow global colonization
p = 0.1, simulations and analytical derivations agree well.

Figure 3.7 illustrates the relative pair correlation functions obtained in simulations on the
over-dispersed point pattern and the analytically derived equilibrium pair abundances with Gaus-
sian kernel and Step function kernel . As in the results on the clumped point pattern, the case
p = 0 and σc = 0.01 results in a large difference between simulation results and analytically
derived relative pair correlation functions. But for cases with p = 0.1 or σc = 0.02, simulation
results and the analytically derived relative pair correlation functions agree well.
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Figure 3.5: The relative pair correlation functions (PCF) on CSR with Gaussian and Step
function kernel, at the final state of the simulation as functions of pair distance r. PCF with
pairs 1-1, 0-1 (1-0), and 0-0 are shown in red, purple and blue, respectively. Sum of the
four relative pair correlation functions is shown in black dash. The equilibrium pair abun-
dance P11(r)g(r),P01(r)g(r)+P10(r)g(r),P00(r)g(r) derived from the singlet and pair dynam-
ics are shown in solid line. Parameter values: Proportion of global colonization p = 0 in the
first and p = 0.1 in the second row, σc = 0.01 in the left and σc = 0.02 in the right column.
n = 1000,cl0 = cg = 0.01,e = 1.
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Figure 3.6: The relative pair correlation function (PCF) on a clumped point pattern with Gaussian
kernel and Step function kernel, at the final state of the simulation as functions of pair distance
r. Pair 1-1, 0-1 (1-0), and 0-0 are shown in red, purple and blue, respectively. Sum of the
four relative pair correlation functions is shown in black dash. The equilibrium pair abundance
P11(r)g(r),P01(r)g(r) + P10(r)g(r),P00(r)g(r) derived from the singlet and pair dynamics are
shown in solid line. Parameter values: Proportion of global colonization p = 0 in the first and
p= 0.1 in the second row, σc = 0.01 in the left and σc = 0.02 in the right column. N = 1000,cl0 =
cg = 0.01,e = 1.
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Figure 3.7: The relative pair correlation function (PCF) on an over-dispersed point pattern with
Gaussian kernel and Step function kernel, at the final state of the simulation as functions of
pair distance r. Pair 1-1, 0-1 (1-0), and 0-0 are shown in red, purple and blue, respectively.
Sum of the four relative pair correlation functions is shown in black dash. The equilibrium
pair abundance P11(r)g(r),P01(r)g(r)+P10(r)g(r),P00(r)g(r) derived from the singlet and pair
dynamics are shown in solid line. Parameter values: Proportion of global colonization p = 0 in
the first and p = 0.1 in the second row, σc = 0.01 in the left and σc = 0.02 in the right column.
N = 1000,cl0 = cg = 0.01,e = 1.
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3.2 Dependency of the 1st order equilibrium on parameters
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Figure 3.8: Dependency of the proportion of occupied patches on the proportion of global col-
onization p on CSR point pattern. Analytically derived equilibrium singlet probability 〈P1〉 is
shown in green, and simulation results (average ± standard deviation for 100 realizations) is
shown in red. The top two figures are for the Gaussian kernel, while the bottom ones are for
the Step function kernel. The left and right column is σc = 0.01 and σc = 0.02, respectively.
n = 1000,cl0 = cg = 0.01,e = 1.

Figure 3.8 plots the equilibrium proportion of occupied patches as the 1st order structure against
the proportion of global colonization rate p on CSR point pattern. Simulation results as the
average proportion of occupied patches for 100 realizations when total extinction does not occur
and analytically derived average singlet probability 〈P1〉 are compared. When the range of local
colonization is large (σc = 0.02), proportion of occupied patches and the analytically derived
equilibrium singlet probability 〈P1〉 agree very well with each other except for p� 1 and p does
not affect both. However, when the range of local colonization is small (σc = 0.01), simulation
results become smaller than the analytically derived equilibrium. Without global colonization
p = 0, occupied patches do not spread in nearly all realizations for the Step function kernel.
The same result as Hamada and Takasu (2019) [10] showed. The model in the case p = 1
corresponds to the non-spatial Levins model and the proportion of occupied patches 〈P1〉 is 0.9
from Eq. (1.2.2).
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Figure 3.9: Dependency of the proportion of occupied patches on the proportion of global col-
onization p on clumped point pattern. Analytically derived equilibrium singlet probability 〈P1〉
is shown in green, and simulation results (average ± standard deviation for 100 realizations) is
shown in red. The top two figures are for the Gaussian kernel, while the bottom ones are for
the Step function kernel. The left and right column is σc = 0.01 and σc = 0.02, respectively.
n = 1000,cl0 = cg = 0.01,e = 1.

Figures 3.9 and 3.10 plot the equilibrium proportion of occupied patches as the 1st order
structure against the proportion of global colonization p on clumped and over-dispersed point
pattern, respectively. Simulation results as the average proportion of occupied patches for 100
realizations when total extinction does not occur and analytically derived average singlet proba-
bility 〈P1〉 are compared. When σc = 0.01, simulation results become very smaller than 〈P1〉 for
small p both for the Gaussian and the Step-function kernel and on clumped and over-dispersed
point pattern. When σc = 0.02, simulation results and 〈P1〉 agree very well with each other both
for the two kernels when p is not small (e.g., p ≥ 0.1). Note that they agree very well even for
p = 0 for the Step-function kernel on over-dispersed point pattern.
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Figure 3.10: Dependency of the proportion of occupied patches on the proportion of global col-
onization p on over-dispersed point pattern. Analytically derived equilibrium singlet probability
〈P1〉 is shown in green, and simulation results (average± standard deviation for 100 realizations)
is shown in red. The top two figures are for the Gaussian kernel, while the bottom ones are for
the Step function kernel. The left and right column is σc = 0.01 and σc = 0.02, respectively.
n = 1000,cl0 = cg = 0.01,e = 1.
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Figure 3.11: Dependency of the proportion of occupied patches on the proportion of local col-
onization range σc on CSR point pattern for a range of global colonization proportion p. An-
alytically derived singlet probability 〈P1〉 is shown in the smooth curve, and simulation results
are shown with average ± standard deviation for 100 realizations when total extinction did not
occur. n = 1000,cl0 = cg = 0.01,e = 1.

Figure 3.11 plots the equilibrium proportion of occupied patches but against the range of
local colonization σc on CSR point pattern. Simulation results as the average proportion of oc-
cupied patches for 100 realizations when total extinction does not occur and analytically derived
average singlet probability 〈P1〉 are compared. When there is only local colonization (p = 0),
simulation results deviate most from 〈P1〉. As p is increased, simulation results agree well with
〈P1〉 and agreement is better in Gaussian than Step function kernel. Again the same result as
Hamada and Takasu (2019) [10] showed.
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Figure 3.12: Dependency of the proportion of occupied patches on the proportion of local col-
onization range σc on a clumped point pattern for a range of global colonization proportion
p. Analytically derived equilibrium singlet probability 〈P1〉 is shown in the smooth curve, and
simulation results are shown with average ± standard deviation for 100 realizations when total
extinction did not occur. n = 1000,cl0 = cg = 0.01,e = 1.
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Figure 3.13: Dependency of the proportion of occupied patches on the proportion of local colo-
nization range σc on an over-dispersed point pattern for a range of global colonization proportion
p. Analytically derived equilibrium singlet probability 〈P1〉 is shown in the smooth curve, and
simulation results are shown with average ± standard deviation for 100 realizations when total
extinction did not occur. n = 1000,cl0 = cg = 0.01,e = 1.

Figures 3.12 and 3.13 plot the equilibrium proportion of occupied patches but against the
range of local colonization σc on the clumped and the over-dispersed point pattern. Simulation
results of the proportion of occupied patches are averages of 100 realizations when total ex-
tinction does not occur and compared with analytically derived average singlet probability 〈P1〉.
Sharing the same conclusion as the case of CSR point pattern, when there is only local colo-
nization (p = 0), simulation results deviate most from 〈P1〉. As p is increased, simulation results
agree well with 〈P1〉 and agreement is better in Gaussian than Step function kernel. Again the
same result as Hamada and Takasu (2019) [10] showed.
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3.3 Probability of total extinction
Total extinction is possible in our stochastic point pattern dynamics when all patches become
empty. To explore the probability of total extinction, we ran 100 realizations starting from one
occupied patch randomly introduced for a combination of local colonization range σc and global
colonization proportion p. Probability of total extinction was calculated as the proportion of re-
alizations that total extinction occurred. One can relate the extinction probability of a metapop-
ulation to studies of the persistence of a metapopulation and metapopulation persistence time.

Figure 3.14 shows the probability of total extinction plotted against σc and p on CSR point
pattern for Gaussian and Step function kernel. The probability of total extinction is significantly
high when the range of local colonization is small and the proportion of global colonization is
small as well. In general, the extinction probability in the case of the Step function kernel is
greater than that of the Gaussian kernel. However, this tendency is not clear for large σc and p.
Even for a large local colonization range and large proportion of global colonization, extinction
probability is not close to zero.
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Figure 3.14: Probability of total extinction plotted against local colonization range σc and global
colonization proportion p on CSR point pattern for Gaussian (yellow) and Step function (green)
kernel. n = 1000,cl0 = cg = 0.01,e = 1
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We have done the same analysis for clumped and over-dispersed baseline point patterns. A
clumped point pattern was generated such that its pair correlation function is given by g(r) =
1+ ae−br with a = 1,b = 80. Then we ran the stochastic simulation on it. In the same way,
an over-dispersed point pattern was generated (a = −1,b = 80), and simulations were done.
Qualitatively the same results have been obtained. Introduction of a small proportion of global
colonization results in fast convergence to the equilibrium state of the dynamics. With a large
local colonization range, the analytically derived 1st order and 2nd order structure agree well
with simulation results.

Finally, Figures 3.15 and 3.16 plot the probability of total extinction starting from one oc-
cupied patch for a combination of the range of local colonization σc and global colonization
proportion p calculated from 100 realizations on the clumped and the over-dispersed point pat-
tern, respectively. Both the figures are quite similar in shape to those of CSR (cf. Figure 3.14).
The total extinction probability is higher in the case of Step-function than in that of Gaussian
kernel for both types of point pattern. The total extinction probability is slightly higher in over-
dispersed than in CSR and clumped point pattern when σc and p are small.
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Figure 3.15: Probability of total extinction plotted against local colonization range σc and global
colonization proportion p on a clumped point pattern for Gaussian (yellow) and Step function
(green) kernel. n = 1000,cl0 = cg = 0.01,e = 1
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Figure 3.16: Probability of total extinction plotted against local colonization range σc and global
colonization proportion p on an over-dispersed point pattern for Gaussian (yellow) and Step
function (green) kernel. n = 1000,cl0 = cg = 0.01,e = 1



Chapter 4

Discussion

We have implemented a spatial metapopulation model as a stochastic point pattern dynamics.
Local patches are spatially distributed with a certain configuration in which an empty patch is
occupied by colonization including both local and global colonization and an occupied patch
becomes empty by local extinction. The point pattern eventually converges to an equilibrium
state. We also have derived an analytical model in terms of singlet and pair probabilities that we
expect will capture the essence of the stochastic point pattern dynamics. The derived analytical
model connects the classical Levins model and our spatially explicit metapopulation model by
the proportion of global colonization rate p. Using simple closures to approximate triplet proba-
bilities, we have successfully derived equilibrium singlet and pair probabilities analytically, and
then compared simulation and analytical results.

Generally, the analytically derived equilibrium properties successfully describe simulation
results for two colonization kernels tested and three types of baseline point pattern on which
the stochastic dynamics runs when the range of local colonization σc is large and the proportion
of global colonization p is not too small. Introduction of a small proportion of global colo-
nization leads to a quick convergence to an equilibrium state of the point pattern. The derived
equilibrium properties, however, become poor to describe simulations as the local colonization
range σc becomes smaller when p is near zero. In such cases, an empty patch and a cluster of
local patches is nearly isolated from other patches and clusters in the landscape, respectively, and
local colonization among patches and clusters is very unlikely to occur. Therefore, when σc is
small and p = 0, we cannot convince that the proportion of occupied patches converges to the
equilibrium mean-field singlet probability analytically derived (Figure 3.2 for σc = 0.01, p = 0).
Success of the analytically derived equilibrium compared with simulations critically depends on
the degree of connectedness of local patches. This also relates to the extinction probability. For
small σc and p ≈ 0, the effective area A = 4πσ2

c of a local patch does not overlap with that of
other patch(es) and thus chance of extinction, starting from one occupied patch, becomes high.
While there is a small chance of local colonization to an empty patch beyond the distance 2σc in
Gaussian kernel, local colonization beyond 2σc is zero in Step-function kernel. This leads to the
greater extinction probability in Step-function kernel than in Gaussian kernel for all of the three
baseline point patterns used.

The approximation of mean-field value in the Eq. (2.2.14) could result in overestimation
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when σc is small. This can be clearly seen in Figures 3.2 to 3.7 in the case when p = 0 and
σc = 0.01, the analytically derived singlet and pair probabilities significantly differ from simula-
tion results, especially with Step function kernel for all three types of point pattern. When global
colonization is included, p = 0.1, the overestimation of that approximation is reduced, as we can
see the analytical results reach much closer to simulation results. When the range of local colo-
nization is large enough, the approximation works well which can be seen in above-mentioned
figures as σc = 0.02.

Moreover, although we have shown in our research that the analytically derived equilibrium
singlet and pair probabilities could be uniquely solved, we do not mathematically check the
stability of the solutions as well as how accurate the solutions are. These evaluations are beyond
the scope of this research. Further study of these aspects could be worth exploring.

It is indisputable that the classical Levins metapopulation model is a valuable theoretical
starting point. However, it still falls short of describing realistic metapopulations we observe in
nature. To study more realistic and complex situations, various models have been explored. For
example, Hanski (1983) [11] derived a mathematical model for two competing species which
may or may not regionally coexist. After that, in [21] Hastings (1991) developed structured
models of metapopulation dynamics that explicitly considered population size in patches and
showed that two positive equilibria were possible. In the same year, Hanski incorporated local
dynamics into metapopulation models and constructed a modified Levins model which takes
into account the empirically observed negative relationship between extinction probability and
the fraction of occupied patches ([13]). Whilst, Hanski and Gyllenberg (1993) [17] have had an
alternative perspective on metapopulation models that allow for spatial variation in habitat patch
size. North and Godfray (2017) [28] have developed a spatially explicit metapopulation model
to study how host and pathogen dispersal jointly affect disease persistence.

There have been two major approaches to mathematically study point pattern dynamics in
general; the method of moments and the method of perturbation expansion. In the method of
moments, we derive dynamics of spatial moments as the mean-field density of points (1st order
structure) and the correlation of pairs made by two points (2nd order structure) and triplets, etc.,
that are built up from mechanistic interactions among points. Except for trivial cases, however,
the derived dynamics of hierarchical orders is not closed and the dynamics is mathematically in-
tractable. To close the dynamics, we need to adopt ad hoc moment closure, thereby a higher order
moment is approximated with a combination of lower order moments (Bolker (1999) [1], Dieck-
mann and Law (2000) [7], North and Godfray (2017) [28]). On the other hand, the method of
perturbation expansion has been proposed as an alternative approach to explore point pattern dy-
namics. It does not require moment closure and can derive spatial moments of all orders that are
exact in the limit when the interaction range is infinitely large (Ovaskainen and Cornell (2006a)
[29], Ovaskainen and Cornell (2006b) [30], Cornell and Ovaskainen (2008) [4], Ovaskainen et
al. (2014) [31], Cornell et al. (2019) [5]).

Spatial metapopulation dynamics has been studied as point pattern dynamics (or point pro-
cess) over the past couple of decades. Ovaskainen and Cornell (2006a) [29] extended the classical
Levins model as we have done in this paper but only local colonization was considered in their
model. They developed a novel method of perturbation expansion around the mean-field dy-
namics in which ad hoc moment closure is not required and the proportion of occupied patches
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and the spatial correlation at equilibrium are derived in a closed form. They showed that the
patch occupancy can be increased or decreased by spatial structure of the baseline landscape.
We obtain the same results; analytically derived proportion of occupied patches depends on the
baseline landscape through the parameter a in the pair correlation function g(r) of the baseline
landscape in Eq. (2.2.25) (a = 0 for CSR, a > 0 for clustered and a < 0 for over-dispersed). This
can be confirmed in Figures 3.8, 3.9 and 3.10 as well as Figures 3.11, 3.12 and 3.13.

Although Ovaskainen and Cornell (2006a) [29] analyzed the same metapopulation dynamics
but only with local colonization being considered, mathematical formulation is slightly different
from ours. In the derivation of stochastic dynamics of status Pi of the point i (Pi(t) ∈ {0,1}) as
stochastic differential equation (SDE), status of the point i and j 6= i has been de-coupled and
correlation between the point i and j has been removed (Eq. (3) of Ovaskainen and Cornell
(2006a) [29]). But in our formulation, we keep the correlation using the pair probability Pi j01
in the singlet dynamics. In many theoretical studies of metapopulation, this de-coupling seems
to be a priori accepted. But in theoretical studies of epidemics, it is not, i.e., Pi j01 6= Pi0Pj1. It
remains not clear if this difference in mathematical formulation leads to fundamental differences
in the analysis.

The method of perturbation expansion has been applied to various spatial dynamics and for-
malized more rigorously (Ovaskainen and Cornell (2006b) [30], Cornell and Ovaskainen (2008)
[4], Ovaskainen et al. (2014) [31]). Cornell et al. (2019) [5] further applied the method of
perturbation expansion to ecological interactions at individual-level in general and provided a
unified framework for analysis of individual-based models. Moment closure used in this paper
as the method of moments is easier to apply than the method of perturbation expansion. Al-
though both the methods are fundamentally different in its origin, both may reflect two sides of
the same coin; they may be essentially the same but they describe the target dynamics in different
manners. Further research is needed to explore how both the methods are related to each other.

Combination of local and global colonization has been studied in a lattice-structured land-
scape using lattice model. Harada and Iwasa (1994) [19] studied the effect of vegetative pro-
duction as local colonization to neighbor patches and seed production as global colonization to
all empty patches in lattice space. Based on simulation and pair approximation analyses, they
showed that there is an optimal fraction of local colonization that maximizes the density of oc-
cupied patches at equilibrium. Harada (1999) [18] further studied evolutionary dynamics of the
allocation to local dispersers with a linear trade-off between local and global dispersers. In both
studies, proportion of occupied patches is maximized at a certain combination of local and global
dispersers. Our model also assumes a linear combination of local and global colonization (Eq.
(2.1.1)). However, proportion of occupied patches monotonically increases as the proportion p
of global colonization is increased (Figures 3.8, 3.9 and 3.10). In our model, total strength of
local and global colonization has been normalized to be the same, cl0 = cg in the unit space Ω. In
reality, however, this assumption is quite unlike to hold; cl0 > cg. Exploring a wider parameter
region for cl0 6= cg may result in the same results obtained in lattice space.

Point pattern approach is very flexible to represent any spatial distribution of local patches.
Hence, there could be some further studies applying point pattern method to both theoretical
problems and biological systems. In our model, all patches are identical in size and thus they
have the same local extinction rate. In reality, however, we observe spatial metapopulations
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where local patches with various areas/sizes are involved. This heterogeneity in patch size can
be easily handled with our point pattern approach as follows: We assume a patch with a minimum
size and represent it as a point, then a patch with a larger size is represented by a certain number
of points that are spatially clustered within the range of local colonization so that it behaves as
one large sized patch. The pair correlation function of such a point pattern g(r) would have a
complicated functional form. But we can use it to analytically derive the equilibrium 1st and 2nd
order structure of empty and occupied patches as we have shown for the three types of baseline
point pattern (CSR, clumped and over-dispersed). Exploring our model on baseline point pat-
terns for, e.g., islands-mainland metapopulation or metapopulation with a gradient in patch size,
etc., is worth challenging. Since the equilibrium theory of island biogeography shares the same
fundamental processes of colonization and extinction with the metapopulation idea, our approach
of point pattern could be extended to revisit the equilibrium theory of island biogeography.

In our model, the status of a point is either empty or occupied. As a further extension of
the present model, it is possible to introduce the 3rd status such as “permanently destroyed” or
“temporarily barren”. The former corresponds to anthropogenic patch destruction and the latter
corresponds to over-exploitation of natural resources by the occupant species. A permanently
destroyed patch may be restored to empty so that the patch can be colonized again. A barren
patch will become empty and can be occupied when natural resources recover after a certain
time. Or we may introduce the 2nd species that always wins against species 1 so that both
species never coexist within a patch. This situation can be modeled by extending the classical
epidemic SIR (Susceptible - Infectious - Recovered) or SIRS (Susceptible - Infectious - Recoved
- Susceptible) model to spatial point pattern dynamics. Further study with three status assigned
to each point is worth exploring.

Regarding to the positions of points in point patterns, in the present model, points are assumed
to be static in the sense that their locations are fixed. Another extension of metapopulation models
which could be explored is that we allow points to be able to move, that means the point pattern
is not static in those models. For instance, if we focus on the metapopulation of an ectoparasite
which inhabits on animals’ fur or skin. As animals move, local patches also moves. In addition,
animals can give birth and die then we also can consider the birth and death of points in the point
pattern. Exploring the more complicated models where the positions of points are not fixed and
the number of points does not remain constant with a certain rule is worth challenging.

On the other hand, in our model, one occupied patch goes to extinct with a constant rate e,
that means the lifetime of an occupied patch is exponentially distributed. Specifically, we assume
the local extinction rate e = 1, so 1/e = 1 and on average an occupied site remains occupied for
unit time 1 but their distribution is exponential. This means that if there is no colonization and
initially there is a certain number of occupied patches, then many of them are in quite short oc-
cupancy; in other words, after being occupied, they quickly become empty. In addition, the local
extinction rate e corresponds to the recovery rate γ in epidemic dynamics such as classical SIS
model, SEIS (Susceptible - Exposed - Infectious - Susceptible) or SIRS models. In those models,
the average life of some infectious states is also exponential distributed, that means most of in-
fected individuals quickly recover after infection, while some infected individuals remain being
infectious for long period of time, but the average time is 1/γ . However, in reality, especially
for infectious diseases such as Covid 19 or Influenza, the recovery time is never exponential
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distributed, ones usually have seen unimodal distribution. It is more realistic when after getting
infected, a lot of people likely recover after a certain time. In the perspective of metapopulation
dynamics, ignoring unimodality and assuming local extinction rate to be constant may be too
simple to apply to real systems. Lately there are some researches on how the unimodality affects
the spread of infectious diseases. It is shown that exponential distribution and unimodal distri-
bution can have slightly different impacts on spread of infectious diseases. Then we might think
about the case that the lifetime of an occupied patch shows a unimodal distribution in further
studies of metapopulation models.

In a broader perspective, we also can apply point pattern method to many biological prob-
lems. Because plants do not move then we can apply point pattern dynamics to study the
metapopulation models in plant ecology. In respect of terrestrial plant studies, for instance,
we can apply point pattern approach to the study the dynamics of mistletoe, a species of hemi-
parasitic plants which are attached to their host trees and extract water and nutrients from the
host plants. We can consider each host tree as a local patch or a point and study the distribution
of host trees which are occupied by mistletoe over a space.

Besides, there are some interesting topics in regard to marine ecosystems which can be stud-
ied theoretically by applying point pattern dynamics. One idea is about the metapopulation of a
special worm that is called tube worm inhabiting the skeletal remains of a dead whales on the sea
floor. After a whale dies, its carcass falls to the seabed and if a whale carcass is found by an egg
of this worm, it will be occupied. When the whale skeleton has been devoured the worms die.
And after some time, the huge bones form whales disappear. The locations of whale’s carcasses
could be considered as a static point pattern then we can study how occupied dead whale bodies
are distributed over space. In addition, we can study a little more complicated case in which the
number of points can change with time when a whale carcass is completely dissolved or new
dead whale body comes to the seabed.

Also relating to studies on biological systems of species living on the ocean floor, we can
study the dynamics of hydrothermal vents, fissure on the seabed from which geothermally heated
water discharges using point pattern dynamics. It is easy to find these vents commonly near such
as volcanically active places or areas where tectonic plates are moving apart. There is a very
special ecosystem and biological communities such as some species of tube worms or other
organisms living around hydrothermal vents. These days, we have more and more precious data
about where hydrothermal vents located. A set of vents can be described as a point pattern. The
location of a vent is considered a local habitat under the deep sea and there might be dispersal
or local extinction of species happening. In this case, the number of vents is fixed and the vents’
locations do not change.

Theoretical studies of the metapopulation dynamics of those worms from the two examples
above as point pattern dynamics are promising as it is impossible to do empirical studies of those
worms under the deep sea and do observations for a long period of time. However, generally for
a lot of of studies, we can compare the results of theoretical problems on spatial metapopulation
dynamics as point pattern dynamics with those of empirical studies and spatial point pattern
analysis of real data.



Conclusion

These days, anthropogenic activities have made an environment increasingly fragmented in
which biological species inhabit; a habitat that was formerly continuously distributed over space
is now fragmented into pieces of local habitats spatially separated to a lesser or a greater extent.
Such a habitat of a spatial metapopulation is best described by a point pattern as a collection of
local patches that are connected with each other by local and global colonization. With increasing
awareness of the vulnerability of biodiversity in a fragmented habitat, spatial metapopulation dy-
namics needs to be studied so that relevant methods of management may be attempted to prevent
complete extinction.

With the results we have gained from this research and other previous studies, we can say that
the point pattern method is a useful and powerful tool to study spatial metapopulation models in
ecology as well as biological problems in general. We appeal the versatility and usefulness of
the point pattern approach to theoretically explored spatial population dynamics in the study of
metapopulation, landscape and conservation ecology.
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