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| ntroduction

Let 9 E Loo(Rn). For any f E LP(An), the pointwise multiplication fg is in
LP(R") by‘a property of the Lebesgue integral. Conversely, it is well known that
if fg isin LP(RNn) for any f E LP(Rn) then 9 E Loo(Rn).

The space of functions of bounded mean oscillation, BM O, Is introduced by

John and Nirenberg [11](1961). BMO(RnN) includes Loo(Rn) and is included in
LP

loc

(R™). The theory of this space has been developed by many authors, Car-
leson, Coifman, Fefferman, Janson, Jones, Reimann, Spanne, Stein, Uchiyama,
etc. Unfortunately, for f E BMO(RN) and for 9 E Loo(Rn), fg is not neces-
sarily in BMO(AN). So, it seems to be meaningful to investigate the pointwise
multiplications on B M O(Rn).

Let A be a function space and 9 be a function. Iff EA = f9 E A, then 9 is
called a pointwise multiplier on A. We denote the set of all pointwise multipliers

on A by PWM(A). With this notation we can state the example at the beginning

as follows:
PWM(LP(R™)) = L*=(R"™).

Johnson [12](1975) showed that
PWM(BMO(R)) ;Ct LOO(R).

The pointwise multipliers on BM 0 are not so simple as on LP.
On the torus T, local structures of function spaces are reflected on the point-

wise multipliers. Let Ay(T), O < a < 1, be the space of a-Lipschitz continuous

functions, and let CKk(T) be the space of k-times continuously differentiable func-

tions. Then

PWM(AQ(T)) 7 Aa(T)a

and

PWM(C*(T)) = C*¥(T).

Stegenga [29](1976) has characterized the pointwise multipliers on BlIvIO(T).
Using this characterization, he could characterize a class of bounded Toeplitz

operators on HI(T) by use of the fact that the dual space of HI is BMO.
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In chapter |, we investigate the structure of the function spaces on which
pointwise multipliers are bounded functions, and we compare with the structure
of the space of functions of bounded mean oscillation. We consider some Banach
spaces and compl ete quasi-normed linear spaces of functions defined on a measure

space (X, ), and we state sufficient conditions that the set of all pointwise
multipliers equals LOO(X).

BMOy, its generalization L?®, measure weighted BMO, Morrey spaces and
Lipschitz spaces have been studied by many authers. In chapter ||, to generalize
these spaces, we introduce a function space bmow,p(R"). It is defined using the
mean oscillation in LP-sense (1 < P < 00) and a weight function w : Rn x R+ »

R+. We characterize the pointwise multipliers on this function space. The

pointwise multipliers reflect deeply the structure of this function space.

In chapter |11, we deepen our study by treating the pointwise multipliers
on bmog(R™) which is a special case of bmow,p(Rn), where ¢ depends only on
r E R+. Our characterization shows that the pointwise multipliers on bmog(R™)
reflect deeply not only the local structure but also the global structure of this
space. Therefore we need a weight functon w dependingon aE Rn and r E R+
Introduced In the previous chapter. Moreover, we state some sufficient conditions
for the pointwise multipliers on bmog(R™), and we give examples of the pointwise
multipliers on this space. Next we consider the pointwise multipliers on subspaces
of bmog(R™) by contrast with bmog(T™), on which the pointwise multipliers
reflect the only local structure. At the end of this chapter, we characterize the
pointwise multipliers on the local Hardy space hl(Rn) introduced by Goldberg
[8](1979), whose dual space is a subspace of bmog(R™).

In chapter |V, we characterize the pointwise multipliers on Morrey spaces and

on the spaces of functions of bounded mean oscillation with the Muckenhoupt

Ap-weight. One of the latter Is a generalized Morrey space.

Let A and B be linear spaces of functions defined on a measure space. In chap-
ter V, we consider the set of all pointwise multipliers from A to B, PWM(A, B).
It is well known that, for lip = 11PI + 11p2, 1 < P < oo,

PWM(LPL(R™, LP(R™) LP2(R™).
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We generalized this equality to Lorentz spaces as follows:

PWM(L(FI:QI)(X)’ L(p*‘?)(X)) - L(pz,qz)(X)_



|. Pointwise multipliers on some Banach spaces

and complete quasi-normed |linear spaces

It 1S Well,known that, for 1 < p < oo,
PWM(LP(R™)) = L*°(R"™).

In this chapter, to compare with the space of functions of bounded mean oscilla-
tion, we investigate structures of function spaces on which pointwise multipliers
are bounded functions. And we generalize the above equality to Banach spaces

and complete quasi-normed linear spaces.

1. Quasi-normed linear spaces.

Let (X, x) be a measure spase and let A be a linear space of functions de-

fined on X. The following is a necessary and sufficient condition for L*°(X) C
PWM(A).

(1.1.1) f EA and h(z)| < f(X)1 ae X =i h E A.

If A has a norm |- | and satisfies

(1.1.2) f EA and |h(z)| £ f(X) ae X

= heEA and |R]| < fl

then any function 9 E L*°(X) C PWM(A) is a bounded operator and

‘19 op < 19 Loo,

where 19 lop Is the operator norm of the pointwise multiplier 9.

On the other hand, if X is o-finite, and if A is a Banach space \vhich satisfies

Chebyshev's inequality, I.e.

(1.1.3) | | ‘ 77‘ forn >0, T EA,

then any pointwise multiplier on A Is a bounded operator.
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We concider the pointwise multipliers on complete quasi-normed |inear spaces,

which are generalizations of Banach spaces.

Assume that A ¢ M eas(X) and A is a quasi-normed linear space, i.e. there

IS a constant k > 1 such that:

In this case, there is a distance d(f,g) = d(f - g) depending only on f --9 such

that
d(f,g) < f - 9 r < 2d(f, g)

where 0 < p < 1, k = 2(a/p)-1. A linear operator T defined on A into A is

continuous with respect to the distance d, if and only if thereis a constant 13 > 0

such that
ITf <BIfl foral fEA.

Then T i1s called bounded. We define

IT =I7lop - inf{f3: ITf < BIf lfor all f E A}.

For a complete quasi-normed linear space, we have the uniform boundedness

theorem and the closed graph theorem.

THEOREM (THE UNIFORM BOUNDEDNESS THEOREM). Let A be a complete
quasi-normed linear space. Let a family {T\; A E A} of bounded operators be
defined on A into A. If the set {T»f; A E A} is bounded at each f E A, then
{|T\\l: X E A} is bounded.

THEOREM (THE CLOSED GRAPH THEOREM). Let A be a complete quas -

normed linear space. A closed linear operater defined on A Iinto A Is bounded.

At the end of this section, we generalize the notion of Chebyshev's inequality.

Let (X,x) be a a-finite measure space, i.e. X is expressible as a countable union
of sets Xi C X such that u(X;) < oo (I = 1,2,...). Let A C Meas(.X) be a

complete quasi-normed linear space. And let ®; : Ry » Ry (I 1,2,...) be
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nondecreasing functions and ®i(t) » 0 (t » 0) for each i. Then we define the

generalized Chebyshev's inequality as follows:

(1.1.4) u({z E Xi; f(x) =T} < &,

“T.)f“ fOrn>O,fEA,|:1121"

2. Sufficient conditions for PWM(A) LOO(X).

For 1 < p < oo, LP(RN) is a Banach space, and for 0 < p < 1, LP(Rn) is a com-
plete quasi-normed linear space. LP(Rn) satisfies the conditions both (1.1.2) and
(1.1.3). To show PWM(LP(Rn)) = Loo(Rn), we can use these conditions. On the
other hand, bmow,p(Rn) defined in the next chapter do not satisfy the condition
(1.1.1), i.e. Loo(Rn) is not included in PWM(bmow,p(Rn)). But bmow,p(Rn)

satisfies the condition (1.1.4). It follows from Lemmas 1.3 and 1.4 in this section
that the pointwise multiplier on bmow,p(Rn) is a bounded operator. Moreover
PWM(bmow,p(Rn)) C Loo(Rn).

Let (X, 1) be a measure space and let A be a linear space of functions defined

on X. In this section, we concider sufficient conditions for PVWWM(A) - LOO(X).

THEOREM 1.1. Let (X, ) be a o-finite measure gpoace and let X be a union

of sets Xi C X such that u(X;) < oo (I -1,2,...). Let A C Meas(X) be a
complete quasi-normed linear oace. Assume that any bounded function whose

support zs Included in Xi for somei s In A. |If A satisfies the condition (1.1.2),

then
PWM(A)=L>=(X) and |gllop = |lgllLe=-

PROOF OF THEOREM 1.1. Assume that 9isin LOO(X). For any f E A,

Ifg(x) < gl Lo If(X)1 ae X

It follows from (1.1.2) that fg isin A and that IIfg |A < ¢l Lo If |A. Therefore
Oisin PWM(A) and

HQHOp < Hg||L°°-

| lext we show

(1.2.1) |gllop 2 ||g]|ze=-

[



We can asuume that 9 |z~ # 0. For any n, 0 < n < |J 1£00, we choose Xi such

that
O< u(E, nXi) < oo where E, ={x EX: \g(X) > n}.

Let h, be the characteristic function of £, N Xi. Then
Nlhy(z)| < |Ryg(z)] a.e. X.

Since h,g is bounded and its support is included in Xi, hyg isin A. It follows

from (1.1.2) that

Thus we have (1.2.1), and

l9 op - 9 £00.

Conversely, assume that 9 isin PWM(A). Let

g(x), if gi¥1 < n,
n, if gX)1 > n,

gn(z) =
then gn isin L°°. By thefirst half of the proof,
logn £00 = gn lop.
Forany T E A,
fgEA and fg.(z)| < fg(x)\ ae X
It follows from (1.1.2) that fgn isin A and that
|fgn 4 < fgl A for any n.

By the uniform boundedness theorem, there is a constant M,O < M < oo, such
that

sup gnl £00 = sup |gn op — M.
n n

Therefore 9 isin L*°(X).



THEOREM 1.2. Let (X, ¢) be a a-finite measure space and let A C I\ eas(X)

be a complete quasi-normed linear space. Assume that, for almost every x EX,

there is a sequence {h; n}or, Of functions in A such that, if ghxn E A then

where C s a positive constant independent of x EX. If A satisfies the conditions
(1.1.2) and (1.1.4), then

(1.2.2)

PWM(A) LOOKX)  and  |lgllop < llgllz= < Cllgllop-

To prove Theorem 1.2, we show Lemmas.

LEMMA 1.3. Let (X, p) be a a-finite measure space and let X be a union of
sets Xi C X such that u(X;) < oo (i - 1,2,...). Let A C Meas(X) be a

quasi-normed linear space. |f A satisfies the condition (1.1.4), then

(1.2.3) In »|1 inA =>

Vi 3{fa)}i=1, asubsequence of {fa}nz;, st. In(j) 1 ae Xi

PROOF. Assumethat In » | in A. For each i, and for all n > 0,

‘Hin- III‘
— 0 as n » 00,
i

p({X E Xi; In(X) - 1(x)1>n}) <&

i.e. In tend to | with respect to the measure u Xi. Then there is a subsequense

IN(j) (] - 1,2,...) such that
IN()) (x) »1(X) ae Xi.

LEMMA 1.4. Let (X, u) be a a-finite measure space and let X be a union of
sets Xi C X such that u(X;) < oo (i - 1,2,...). Let A C lvieas(X) be a

complete quasi-normed linear space. |f A satisfies the condition (1.2.3), then

any pointwise multiplier on A s a bounded operator.

PROOF. Assume that gisin PWM(A). We show g is a closed operator. If

In »| in A and Ing *v in A,



then, it follows from (1.2.3) that

Inj) *1 ae Xi and INj(K))g *v ae Xi.

Therefore 19 =v a.e. Xi for al i. And we have 19 - v ae. X. By the closed

graph theorem, 9 Is a bounded operaitor.

PROOF OF THEOREM 1.2. Assume that 9 isin LOO(X). For any 1€ A,
1g9(x)| < 9o I(x) ae X.

It follows from (1.1.2) that Igisin Aandthat 1g 4 < 9lloo |l A. Therefore
91sin PWM(A) and

lgllop < llgllze=-

Conversely, assume that 9 is in PWM(A). It follows from Lemmas 1.3 and

1.4 that 9 Is a bounded operator. For hx,n E A, we have

Ih [ - gOp.

It follows from (1.2.2) that

lg(x) <Cl9 op ae X

Therefore 9isin LOO(X) and that

19l < Cllgllop.
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1. Pointwise multipliers on bmow,p(Rn)

The purpose of this chapter Is to characterize the pointwise multipliers on
bmo, »(R™), which is the function space defined using the mean oscillation in
LP-sense(1 < p < 00) and a weight function w(x,r) : Rn x R+ » R+. The

pointwise multipliers reflect deeply the structure of this space. bmow,p(Rn) is a
generalization of many function spaces, bmog(R™), LP®(R™), measure weighted

B M O-spaces, Morrey spaces and a-Lipschitz spaces, etc. ... .

In the first section we state the definition of bmow,p. In the second section we
state the mein theorem. The third and fourth sections are for the preliminaries

and lemmas. In the last section we give a proof of the theorem.

The letter C will always denote a constant, not necessarily the same one.

1. Definitions.

Let R™ be the n-dimensional Euclidean space. For a E Rn and for r > 0O, let
I(a,r) be the cube {x E Rn : IXi - ail<r/2,i 1,2,..,n} whose edges have
length r and are parallel to the coordinate axes. We denote the L ebesgue measure

of E ¢ R® by |IEl. For afunction | E Lfog(Rn) and for a cube |  I(a,r), we

denote the mean value and the mean oscillation of | on | by
1
11 = M(/, 1) = ——‘I(X)dx
|

and

— —i‘ ‘ 1/(x)-11 dx

respectively. Let Ry be the set of all positive real numbers. For 1 <p < 00 and

for a weight function w(X,r) : Rn x R » R+, we denote the weighted mean

oscillation of | E L?. (Rn) on | by

loc

1 lip

MOw,p(/, 1) = MOw,p(/, a,1) = w(l) Ilf(x) — f1|7 dz

where W(l) w(a, r) for acubel - I(ar).

11



Now we define

|
bmow,p(R")  f E Lfoc(R™) : sup MOw,p(f, 1) < oo
I

1f BMOw,p = 'sup MOw,p(f, 1), If bmowp  fIBMOw,p + M(f, O, 1)].
I

If there is a positive constant C such that W(lI) < Cv(Il) for any |, then

bmow,p(Rn) C bmov,p(Rn). Therefore if wand v are comparable i.e. there is a

positive constant C such that
C-t<w(D/v(l) < C forany I,

then bmo,, ,(R™) - bmov,p(Rn).
Usually, bmow,p denoded by BMOw,p equipped with the seminorm |- BMOw,p.

Then BMOw,p modulo constants Is a Banach space. But the pointwise multipli-
ers are defined on the function spaces or on the spaces modulo null-functions. To

consider pointwise multipliers, we denote bmow,p instead of BMOw,p and treat

as a space modulo null-functions. bmow,p is a Banach space equipped with the
norm | . [ bmow,p:

bmow,p(RN) is a generalization of many function spaces as follows;

(@) Let p=1and ¢ : R+ » R+ be a nondecreasing function. For W(x, r) =
ro(r),
bmow,p(Rn) — bmoqg(R"),

(see Campanato [3,4,5] and Spanne [206])

(b) Let ® : R+ » R+ be a nondecreasing function. For w(x, r)  ®(r),
bmow,»(R™) = LP*(R™),

(see Peetre [25]). In particular, let W(Xx,r) - r*.
(bl) IfA- 0 then

bmoy »(R™) = LP(R™) + {constants}.

(b2) If0< A <n then

bmow, »(R™) = M, y(R™).

12



Thisis the Morrey space (see Morrey [16], Zorko [31] etc.).
(b3) If A - N then
bmo,, »,(R™) = bmo(R").

This is the space of functions of bounded mean oscillation, BM O, intro-

duced by John and Nirenberg [11]. If T E bmo(An) then, for any cube
| 1(a,r),

{x E1 :If(x) - fil>0o}l< Bexp(- bo/ lfiBMO)rn  for o > 0,

where B, bare constants depending only on n. This John and Nirenberg's

Inequality and Holder's inequality show that
bmoy ,(R™) = bmo,, 1(R™) for 1 < p < oo, w(z,r) =r".
(b4) Ifn < A< n+pthen
bmoy ,(R™) = Ao(R™),

wherea = (A—n)/p. Thisis the space of a-Lipschitz continuous functions
(see Meyers [15]).
(c) Let p - 1 and u be a doubling measure on An, i.e. u be a non-negative

locally integrable function satisfying the property:

u(x) dx < C  u(x) dx whenever e J and Jl < 2111
J |

where C is independent of I and J. For w(l) = Il u(x) dx,
bmow,p(A™) - bmou(R™).

This is the measure weighted BM O space.

2. Man theorelTlI.

For f E bmow,p(Rn), it follows from Holder's inequality that

MO(f,O.r) — = F(x)-M(f,O,r) dx
" ho,r)
lip
<21 1% - M, 0, niP X
I 1 (O,r)
w(O,r) ,iip
< ‘ rn | |f bmow, p-

13



Then, for n > 0, we have

n {XE1(0,r): j(x)I>n} < li () dx

1 (O,r)

<

\ () - M(j,0,r) dx+rnIM(, 0, 1)]
1 (O,r)

<r" [ MO(j,O,r) + M(j,O,r) - j(x)dx +]

1(0,1)

J (X) ax

1(0,1)

<r" | MO, 0,r) +

i () - M(j,0,r) dx+ |\/|(J',0,1)\|

1 (O,r)
<r"((1+rn)MO(j,0,r) + M(, 0, DI

‘W [ lip
|

| “J |wbmow,p -

Therefore we have the generalized Chebyshev's inequality (1.1.4) in Chapter |.
It follows from Lemmas 1.3 and 1.4 in Chapter | that any pointwise rnultiplier

on bmow,p(Rn) is a bounded operator.

Our main result 1n this chapter Is the following.

THEOREM 2.1. Let 1 < p < oo. Assume that there ezists a constant A > 2

such that for any a,b € R*, r >0, s > 1,

(2.2.1) A-1 < w(arjw(a,zr) < A
r t lip P
(2.2.2) ‘
(2.2.3) a-b<r= A-*<wrnjwb,r) <A,
(2.2.4) w(a, sr) < Asn+pw(a,r).
Then

PWM(bmoy »,(R™)) = bmoys ,(R™) N L=°(R™)

WhereV\/*:w/\Il,lIl v, + ¥, and

2.2. —

( 5) lIJl(a’v T') 1 tn|p+1 | 3
rnax(2,l al,r) t)l /p P

(2.2.6) Wa(a,r) = | | Wt(raltl’p+1 o

14



Moreover) the operator norm of g E PIMNM( bmow,p(Rn)) zs comparable to

gl BMow..p + 0] co-

This reSl’Jl’[ shows that the pointwise multipliers reflect deeply the structure of
bmow,p(RnN).

Janson [10](1976) has characterized pointwise multipliers on bmog(T™) on the
n-dimensional torus Tn, where ¢ Is nondecreasing and there is a constant A > 0
such that ¢(rq)/re < A¢(ry)/ry for 0 < r1 <12 In this case, ¥ in our theorem

IS the following:

o(r)- |* ¢5€[Q ot.

In the next chapter, we will consider the case of bmog(R™), which is a special
case of bmow,p(Rn). ¢ depends only on r E R+. However, ¥ depends not only
onr E Ry but also on a E Rn. The pointwise multipliers on bmog(R™) reflect
not only the local structure but also the global structure. Therefore we need the

weight function depended onr E Ry and on a E Rn.

3. Preliminaries.

In this section, we state some simple lemmas.

LEMMA 2.2.

lHp

lHp
‘ < 2inf
C

\ ‘ 11(x) - 11 pax ‘ 1(x) - 8P dx
| |
LEMMA 2.3. If |F(z1) — F(22)| £ C|z1 — 24|, then
MOw,p(F(!), 1) £ 2C MOw,p(!, I).

The above Lemmas are showed by the triangle inequality and Holder's

Inequality.

LEMMA 2.4. Ifll C 1,) then

(2.3.1) M(f,I,) = M(f,I2)| < +

l 3
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and

(2.3.2) MO(f, 1)) < 2‘, MO(f,I).

PROOF. Since

1 1|
o \

we have (2.3.1). And we have

1
1|

LEMMA 2.5. There is a constant C = 0 such that

2S MO(J ,a,t) cit
t

(2.3.3) IM(j,ar)- IVI(j,as <C for 0<r <s

I

where C is independent of |, a, rand s.

PROOF. By (2.3.2), we have

(2.3.4) MO(], ar) - (log2)-1

2r IVIO(j,a,r) dt < C | 2r MO(], a t) dt
t : t '

I I

If 2-K_1s < r < 2-Kg, then

IM(J, a,r) - M(], & 9\

k-1
S IM(J1a1r) B M(J1a12_ks) T M(J1a12_1' 18) B M(J,&Z—-JS)‘
=0
k K 2-1+1g MOCLLQlD dt
< 20 youlrOla T ) K'C L

by (2.3.1) and (2.3.4). This proves (2.3.3).

LEMMA 2.6. Let 1< p <co. There is a constant C > 0 such that

P

- w(a t)I/P
dx < Cw(a, I)

, ot
Ix-al  tT/p+1

IX-al<r

16



where C 3 Independent ofa and r.

PROOF. We denote the volume of the unit ball by on. Then we have

- w(a t)l/p P T, @OQUVP L P
weal t/he] X = tn/p+| TP P
\X_a|<r X-a ﬂp O P
' t 1/p ( t)l/p - w(a t)I/P
_ o g dp‘ wa St _ on ‘ @nl/P P
5 0 tn, P+ N O L

< Cw(a,r)

by Minkowski's inequality and (2.2.2).
LEMMA 2.6. Let 1 < p<oo. There s a constant C > 0 such that

sw(a t)I/P

tn/p+1

w(a t)l/
2S ( )pdt<C‘ dt for0< 2r <s

tn/p+| -

where C s independent of a, rand s.

I I

PROOF. By a change of variable and (2.2.1), we have

2 w(a t)I/P w(a 2t)l/
) n/p+| s2 (2t)n/Pr1
l/p l/p
A S W(a. l/p A s w(a t)I/P
= ’ ZTT A, £ N/ Py | at < } ZHI tn;P+1  dt.
Therefore
2s W(a t)I/P AP [ w(a,t)!/? ”

< Rl
tprl | o ‘ o

4. Lemmas.

In this section we show some lemmas needed to prove the theorem. Let 1 <

p < oo. First, for aE Rn and r > 0, we define

(2.4.1) W(a,r) =

LEMMA 2.8. For a E Rn, let

fa(xy W(a, Ix- al).

17



Then |'a" emow,p < C independently of a.

PROOF. We show
(2.4.2) IVIOw,p('a, b,r) < C Independently of a, b, and r.

Case 1. a- b <. /nr. Sincel(b,r) c { x- a < 2y/nr}, we have

2vnr w(a t)l/p
@y dt IDdx

lla(x) - W(a, 2v/nr) pdx < | ix-al  t", P+l

1 (b,r) lz—a|<2y/nr
< Cw(a, 2¢/nr) < Cw(b, 2v/nr) < Cw(b, r),

by Lemma 2.6, (2.2.1) and (2.2.3). Thisinequality and Lemma 2.2 show (2.4.2).
Case 2 la- b > /nr. It follows from (2.2.3) and (2.2.4) that

a-b| |MP

r

(2.4.3) w(a, a —b|) < Aw(b, a —b|) < A?

w(b,r).

1fx E I(b, r), then Ix-al iscomparableto la-b. Therefore, for x-a <t < a-b|
orfor x-a>t>a-Q,

w(a,t) - Cw(a, a-b)

(24.4) thHP - a- bntp -

By (2.4.3) and (2.4.4), we have

la-bl w(a t)I/p |p

la(x) - W(a, la - bl) pdx - J dt dx
I(b,r) ‘ ) |I(b,r) Ix-al  t"/p+]
)
S_Cw(n;r) Ja- 0l - X - aP dx
rTP oo
= Cw. 1) X - biPdx < Cw(b, r).
1(b,r)

This inequality and Lemma 2.2 show (2.4.2).

LEMMA 2.9. Suppose ¥ Is defined by {2.25} and {2.2.6}. Then there Is a
constant C > 0 such that

IM(', a,r) < Cl!H bmow,p®(a, r)I/P
where C is independent of ! E bmow,p(Rn)J a and r.
PROOF. We show
(2.4.5) M(1,ar)- M(!, 0,1 <CIlI! Bmow,p¥(a,r)I/P

18



by using (2.3.1), (2.3.3), (2.3.4) and Lemma 2.7.

Case 1. max(r,1) < lal/2. Since lea,r) C lea, al/2) ¢ 1(0,31a) and

1(0,1) c 1(0,3lal), we have

M(l,ar)- M(l,ala/2) <G :

al w(a t)/P
{n /JI3+I

< Cil||fllBmo,,,, at

T

and

\M(!, & 1al/2) - M(!,0,3a) +IM(!,0,3a)- M(!, 0,1)|
|

2 L
1
1A MO(! ° t) s\ w(O,t)I/p
< (G5 £ dt < GBI! HBMOw,p tn/p+| dt
1 1
al w(O, t)I/P
< G211l iBMOw,p tn/p+1  dt.

1
Hence (2.4.5) follows.

Case 22 max( a/2,1) <r. Sincelea,r), 1(0,1) c 1(0, 5r), we have
\M(!,a,r) -M(!,0,1)1
< IVI(t,ar) - M(!, 0,51 + IM(!, O, 5r) - M(!, 0,1)

O

|OT MO(I t) dt

S5HMO(I,O,5r) T Gg ¢
1

OT W(OJt)l/p "
1 tn/ P+

max (2,T) w (0O, t)l/p

< Cs t - 6  BMOwW,p

< Gl s mow,p

Hence (2.4.5) follows.
Case 3: max( a/2,r) <1 Sincel(ar),1(0,1) c I(a 5), we have
M(!,ar) - M(!, 0O, 1)1
< IM(1,ar)- M(Y,a5l+ M(!, a5 - M(1,0, Dl

7 t o

< Cs t - 8 BMOu, tn/p+l

T T

| > w(_ D)I/p
< GIl! iBMow,p m/pe1 .

T
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Hence (2.4.5) follows.

The next two lemmas show that the estimate in Lemma 3.2 Is sharp.

LEMMA 2.10. Let

a maX(2,|x|) W(O,Qllp (i
(X) = max(—W(0,2),-W (0, x))- |, it

Then | E bmow,p(Rn) and there is a constant C > 0 such that
(2.4.6) M(f,a,r) > C¥y(a,r)/?

where C s Independent of I(a, r).

PROOF. It follows from Lemma 2.8 and Lemma 2.3 that | E bmo, ,(R™).
Next we show (2.4.6), by using Lemma 2.7 and the fact that W(O, r) isdecreasing
with respect tor.

Case 1. 4a <r. Since{x <r/4} c I(a,r), we have

M(/,a ) >r-" l | (X) ax
/8<|z|<r/4
> 3 ik max(- W(0,2),- W(0, r/8)) dx
r/8<|z|<r/4
max(2,r/8) W(O t)l/p g8max(2,r/8) W(O, tt)l/P
- > C |
C 1 tn/p+ C%i_— = 1 t”/p+l at.

This proves (2.4.6).
Case 22 4a > r. Since I(a,r/(4y/n)) C {|z| > a/2} ,wehave

M (l,ar) >r-n | (x) dx
I(a,r/(4y/n)

o L max(- W(0,2), - W(0, la/2)) dx
(a,r/(4v/n))

max(2,1a1/2) W(O t)I/p
- T,> C

1 t —+ | -

8 max(2,lal/2) W(O t)1/p "

- C 1 tn/p+ 1"

This proves (2.4.6).

LEMMA 2.11. For any I(a, r) there is | E bmow,p(Rn) such that

(2-4-7) ”I bmow, p < C1 and
(2.4.8) M(!,a,r) > Cy¥y(a,r)t/?
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where C; > 0 and C, > 0 are independent of 1(a,r) and |.

PROOF. Case 1. max(r, 1) < al/(2+/n). For 1(a,r), let
| j(x) W(a x- al)- M(W(a, Ix- al),0, 1).

Then M(J, 0,1) - 0, so Lemma 2.8 and Lemma 2.3 show (2.4.7). To prove

(2.4.8), we note that W(a,r) is decreasing with respect to r. Since X - al >
a - Ix > al-y/n/2> @ /2 for x E 1(0,1), we have

M(W(a, Ix - al1),0,1) < W(a, la /2).
And since IX - a < +y/nr/2 for XE 1(a,r),

M(W(a, x- a),ar) > W(a Vnr/2).
Therefore, by a change of variable, (2.2.1) and Lemma 2.7, we have

M(j, ar) > W(a vnrl2) - W(a, lall2)

al’2 w(a t)I/P lal/v/n w(a t)l/p al w(a,t)l/p
— J dat > C At >C o+l dt
vl NP+ - ] tn/p+1 : ] P -

This proves (2.4.8).
Case 22 max(l, a/(2y/n)) <r. For 1(a,r), let

j (X) - max(W (0, 1/(8/n)) - W (0, xl), 0)

which is independent of 1(a,r). Thereis a cube 1(b,r/4) c 1(a,r)n{xl > r/4}.
Since 1/(8y/n) < r/(8y/n) < r/4 < IXl for x E 1(b,r/4), we have

a W(O t)I/P

(8 /m) tn/fo+|
2v/nr W(O t)l/p

S

r At for X E (b, r/4)

j(X) = W(O, r/(8y/n)) - W(O, r/4) = dt

>C

¥

and
2T (0, t)1/P

tn/p+1 dt.

M(f,a,r)>4""M(f,b,r/4) > 4_"'C/

r

For r <t < 2y/nr and for |a| < 2y/nr, W(O,t) is comparable to w(a,t). Then

2V @ t)l/P

M(J,ar) > C t/P+1  dt.

r
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This proves (2.4.8).
Case 3. max(r, la /(2v/n)) < 1. For I(a,r), let

f(x) = max(v(a Ix - al) - W(a, n), 0).

Then |If Bmow,p is independent of |, and

| l/p
‘M(f,(),l) S f de
1(0,1)
p I/p
_ ‘ W@ nie o

< Cw(a,n)'? < C'w(0,n)/?.

This proves (2.4.7). Since x - a < /nr/2 for x E I(a r), we have

M (f,ar) > W(a Vnr/2) - W(a n)

» W(a, DI/P dt > c | 2Yrw(a)l/p
S/ tn/p+1 ) | tn/p+1  dt.

This proves (2.4.8).

LEMMA 2.12. Suppose f E bmow,p(R") and 9 E Loo(R™). Then, fg belongs
to bmow,p(Rn) If and only if

F(f,g) =sup fl IviIOw,p(g,!) < oo.
|

In this case

(2.4.9) lfg BMow,p - F(f,g) < 2 fl BMow.p 9| oo

PROOF. For any cube | , we have

Nl(Fa)() - (fg)l ey - fll g(-) - gll LP)]
< l(fg)() - (f9)I - flg(’) + flgl Lr()
< I(f(:) - fg(:) ey + (fg)r - figl Ill/p

1 1/
\ \ ‘ ‘I ((fg)(x) - fI9(X)) dx| |I|*/?




Hence

IMOw p(fg,1) -1 fi MOw,p(g,1) < 2M O, p(f,1) gl0o

which shows (2.4.9).

5. Proof of the theorem.

We write ¥(I) ¥(ar) for | = 1(a,r).

PROOF OF THEOREM 2.1. Suppose, 9 E bmow* p(Rn) n Loo(Rn). For any
f E bmow,p(Rn) and for any |, by Lemma 2.9, we have

lfI‘MOw,p(gaI) < C”bemOw,p ‘I’(I)l/pﬂéfowm(ga[)

< Cl|fllsmoun,,ll9llBMO,. , < 0.

Therefore, by Lemma 2.12, fg E bmow,p(Rn) and

1fg 1IBMow,p < GIIf 1bmowp Igi BMOwr p + 21 f 1BMOw plglo0.

Since

'M(fg,0, 1)1 < llg 100(MO(f, 0, 1) + IM(f, 0, 1)1),

we have

l1fg Ibmowp < G( 9 BMOw* ,p+ 9 100)1 fl bmow,p

which shows that 9 is a pointwise multiplier on bmow,p(Rn), and

l9llop < C(llgllBMO,. , + ||9]/co)

where glop is the operator norm of g.

Conversely, suppose 9 is a pointwise multiplier on bmow p(Rn). First we show

9 E Loo(Rn). For any cube 1= 1(a,r) with r < 1, we define h(x) as follows

r W(a t)l/p

Ix-al t"/P+1

h(x) = max(W(a, x- a)- W(a,r),0 max | dt. 0

Then, it follows from Lemma 2.8 and Lemma 2.3 that [In IBMOw,)p < G indepen-
dently of I. For a > 1+ /n/2, M(h,0O,l) - 0, since 1(0,1) and the support
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of h are disjoint. And for la < 1+ +/n/2, by Lemma 2.6,

lip

'M(h,0,1) < hIP da

1(0,1)

plip

- w(a t)l/p 4 d

x-al  tnl P+

Ix-al<l
< Cw(a, Dl/p < Cw(O, DHI/p.
Hence lhibmow,p < C independently of I. Now,if xX-a <r/2,then

r W at@
tniptl -

c/2 tnlp+] rnip

n(x) =

r/2

Therefore, by considering the support of h, for (J - M(gh, a, 4r),

oh(x) - (lpdx

| (a,4r)
> | gh(X)-(JPdx+ (JPdx
| x-al<r/2 | (a,4r)\I(a,2r)
> (gh(x)-(IP+ | P) dx > 21 P gh(x) pdx
| x-al<r/2 IX-al<rl2
_> Cw(ran,r) 'g(x) Pdx.
| Xx-al<r/2
Hence
1 1
i i Oh(x) - (0 Pdx
I | x-al<r/2 W a,r | (a,4r)

< C( gh bmowpP < C( 9 op)P.

Letting r tend to zero, we have

g@a) <C 90p ae and 910 < cC glop.

Second, we show 9 E bmow.,p(Rn). By Lemma 2.12, we have

Sup [11vIOw,p(g, 1) < 11g BMOwpp + 21 1 1BMOw,p lig| 00
< (Ilig Op+219100) Il bmowp < C 9 Op f bmow,p
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for any f E bmow,p(Rn). Takingf(x) max(-vV(0O,2),-W(O, Ix!)), by Lemma

2.10, we have

T, (I)'/?MOw,p(g, 1) < GIfAMOw,p(g, 1)

< G' dllop Ifllbmow,p < Gil Ig lop for any I.

And by Lemma 2.11 we have, for any cube | thereis afunction f E bmow,p(Rn)
such that

U,(DY?MOw,p(g, 1) < GIfl MOw,p(g, I)
< G' glopl fl bmowp < Gil gllop,

where GIl is independent of | and f. These prove g E bmow.,p(Rn) and

lgi BMOw .» < Gl gOp'

The proof Is complete.
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I11. Pointwise multipliers on bmog, on its subspaces and on hl.

In this chapter, we assume that ¢ is a positive nondecreasing function defined
on Ry. bmog(R™) is the function space defined using the mean oscillation and
the weight function ¢. It Is a special case of bmow,p(Rn).

In the first two sections, we state definitions and characterize the pointwise
multipliers on bmog(R™). This characterization shows that the pointwise multi-
pliers on bmoy(R™) reflect deeply not only the local structure but also the global
structure of this space. Therefore we need a weight functon w depended on
a E R®™ and r E R4 introduced in the previous chapter. Next we state some
sufficient conditions for the pointwise multipliers on bmog(R™), and we give ex-
amples of the pointwise multipliers on this space.

In the third section, we consider the pointwise multipliers on subspaces of

bmog(R™) by contrast with bmog(T™), on which the pointwise multipliers reflect

the only local structure.

In the last section of this chapter, we characterize the pointwise multipliers
on the local Hardy space hl (R™) introduced by Goldberg [8](1979), whose dual

space is a subspace of bmog(R™).

1. Definitions.

For 1 < p < oo, and for anondecreasing function ¢ : Ry » Ry, let wg ,(X, 1) =
r*@(r)P. It follows from John and Nirenberg's inequality and Holder's inequality
that

bmoy, , »(R™) = bmoy, , 1(R™)

Then we define

bm0¢(Rn) — bm0w¢,p 1p(R n)’

| - | f(x) - fl dx
I=l@ar)r r | |

| f bmos = fllBMO, + M(f,O,DI-

If ¢(r) = 1 then bmogs(R™) - bmo(Rn), the space of functions of bounded mean

oscillation introduced by John and Nirenberg [11](1961). And If ¢(r) ro

)
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O< a £ 1, then bmoyg(R™) coincides with A,(R™), the space of a-Lipschitz
continuous functions (see Meyers [15](1964)). bmoys(R™) is a generalization of
bmo(Rn) and A,(R™).

Let Ay(R™) be the set of all measurable functions f such that

f(x) - f(y)1
e - o)

Then
A¢.(Rn) C bmo¢(R").

In particular, if ¢(r) 1 then
A¢(Rn) = LOO(RR) g me(Rn) = bmo¢(R").

If ¢(r) tends to zero as r tends to zero, then any function f E A4(R™) is contin-
uous. And if J& ¢(t)t~1 dt < oo, then any function T E bmog(R™) is continuous
(see Spanne [26](1965)). Moreover, Agx(R™) bmoygz(R™), if and only if there is
a positive constant C such that ¢(r)™! for o(t)t~1 dt < C for r > 0 (see Nakai
[20](1984)).

If ¢(r)/r is almost decreasing, i.e. there is a positive constant A such that

(311) ¢(T2)/T‘2 S A(,é(rl)/rl fOf 0 < A8 S 79,
then
(3.1.2)

Ix] 1

Therefore, if J. ¢(t)t-1dt tends to infinity as r tends to zero then bmogy(R™)

contains not only noncontinuous functions but also unbounded functions (see
Lemma 2.8 and [20]).

On the n-dimensional torus Tn, Agz(T") is a subspace of L*=(T"™). Then we

have

PWM(As(T™)) = Ag(T™).

Stegenga [29](1976) has characterized the pointwise multipliers on bmo(T).

Using this characterization, he could characterize a class of bounded Toeplitz
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operators on HI(T) by use of the fact that the dual space of HI(T) is bmo(T).

This Hardy space HI, which is a subspace of L1, is also important function space

and has been studied by many aothors.

Janson [10](1976) has characterized the pointwise multipliers on bmog(Tn)

on the assumption that ¢(r)/r is ailmost decreasing. His characterization is as
follows:

PWM (bmog(T")) = brnoy(T") N L™(T7),

where ¥ (r) = ¢(r)/ J. 4(¢)t~! dt. This characterization shows that the pointwise

multipliers on bmog(T™) reflect deeply the local structure.

Moreover, Using the duality, Janson showed that HI(T") and bmo(T") have

the same pointwise multipliers, I1.e.

PWM(H(T™)) = bmoy(T") N L>®(T"),

where ¥(r) -1/1og(l/r).

However, I1n contrast with that

PWM(HI(R™) - {constant functions} .

The dual space of HI (Rn) is BM O(RM) modulo constants.
Let hI(RN) be the local Hardy space introduced by D.Goldberg [8]. Then the

dual space of hl (Rn) is a subspace of bmo(Rn).

We define a subspace of bmog(R™) as follows:

|
ubmbmog(R™) = f E L. (R™): Iflgmo, + sup IM(f,a, )1 < oo
aER"

This Is a Banach space equipped with a norm
| f wbmbmo, = fl BMO, + sup IM(f, a, 1)|.
aERN

For ¢(r) = 1, we denote ubmbmoy(R™) by ubmbmo(Rn). Goldberg [8, Corollary
1] introduced ubmbmo(Rn), by the symbol bmo, and show that it is the dual
space of h' (Rn).

2. Pointwise multipliers on bmog(R™).
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Now we characterize the pointwise multipliers on bmog(R™). If ¢ satisfies the

condition (3.1.1) then, forr > 0and s 2 1,

1 5 ré(r) p ¢
2043 4.~ (2r)Pd(2r) — 2%
{<-r I,

o N
(sr)ng(sr) < Asn+1rNg(r).

Therefore, by Theorem 2.1 in the previous chapter, we have the following:

THEOREM 3.1. If ¢(r)/r s almost decreasing) then
PWM (bmog(R™)) = bmoy« 1(R™) N L*°(R™),

where

1 2+|a|
o(t)t~1 dt| + o(t)t™" dt

1

(3.2.1) w*(a,r) =r"¢(r) /|
Moreover, the operator norm of g E PWM(bmoyg(R™)) s comparable to

|g”BMOw-'1 + ”gHLoo

This result contrasts with the case of torus. ¢ depends only on r E R+.

However w* depends not only on r E R4 but also on a E R™. The pointwise

multipliers on bmog(R™) reflect not only the local structure but also the global

structure of this function space.
We note that the assumption “¢(r)jr is aimost decreasing” is able to be re-

placed by “¢ Is concave". We have learned this from J. Peetre:

LEMMA (Peetre). If ¢ : R+ » Ry Is nondecreasing and ¢(r)/r is almost
decreasing, then there I1s a nondecreasing concave function ¥ : Ry » R4 such

that ¥ Is comparable to ¢ i.e there is a positive constant C such that
C-* < ¢(r)/¢(r) < C for anyr > 0.

Next, as conseqguences of the above theorem, we give some sufficient conditions
for the pointwise multipliers on bmog(R™), corresponding to those in the torus

case, Stegenga [29, Corollary 2.8].
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Let ¢(r)/r be amost decreasing. We define strictly positive functions ®*(r)

and ®*(r) as follows:;

max (2,r) ¢5gt) PR (‘r) - ‘ ¢(t) dt.

(3.2.2) d*(r) =
1 L min{l,r) 1

Then, 1t follows from (3.1.2) and Lemma 2.3 In the previous chapter that:
(3.2.3) ®*(|z]), P«(|z]|) 1sin bmoy(R™).

And ®*(2r) and ®.(2r) are comparable to ®*(r) and ®.(r), respectively, i.e.

there are positive constants C; and C, such that
(3.2.4) ®*(r) < ®%(2r) < C1®%(r), @u(r) > 2.(2r) > Cy®.(r) forr > 0.

Therefore w* In (3.2.1) Is comparable to

ré(r)
D, (r) + @*(r) + 2*(|a])

With definition (3.2.2), we state the following:

PROPOSITION 3.2. Let g be a measurable function. |f there are constants
C, >0 C, >0and cE C such that, for x,y E Rn with y\ < |,

(3.2.5) ‘ & C19(ly])

%
\

where ¢(0+) =lim, o ¢(r), then g is a pointwise multiplier on bmog(R™).

(3.2.6) \

COROLLARY 3.3. Let g = gl/g2. If there are positive constants C, (I —
1,2, 3,4) such that, for x,y € R",

gl(X) <£C1, and 191(X) - gl(Y) €< Ca2x- Y,
g2(X)1 > C3®*( x) and 1g2(X) - g2(Y) < C, x- Y,
then g is a pointwise multiplier on bmoy (RN).
We prove these proposition and corollary, by using the property (3.2.4).
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PROOF OF PROPOSITION 3.2. Wemay assume that ¢ = 0, since constant func-
tions are clearly in PWM (bmoyg(R™)). It follows from (3.2.6) that 9 E Loo(Rn).

Next we show that, for any cube | (4, r),

\
(3.2.7) e g S

Case 1. »r <1/y/n and ¢(0+) = 0. By Lemma 2.2 and (3.2.5), we have

4 (ln(m\ i o 1 0(r)

Hence (3.2.7) follows.
Case 2 r < 11/n and ¢(0+) > 0. We have

2C1p r

MO(g, I) = ‘IZ‘ | |

And, since ®*(|z|) is comparable to ®*(|a|) for x E |, by (3.2.4), we have

. C Co(r)
\ \

Hence (3.2.7) follows.
Case 3 1lvn <r <lal/v/n. I1f x E I, then lal/2 < IxI € 3\al/2. Therefore

®*( x ) is comparable to ®*(|a ) for x E |. Then we have

Hence (3.2.7) follows.

Case 4. 1lly/n <rand a/y/n <r. If xE I, then x < 2nr. By using the

Inequality;
r 1 2r 5 5
— — dp < - e forr 2> €,
ez logp ~ - logr
we have
N b
C' onr 1 C' | 2nr
_ 1 d
< — _ 1
<, o e 9P L 1 |
C Lan 1 C"
- — — —_—— — - — :
- r¢(1) log max (2, pso - log2nr



On the other hand,
®*(r) < ¢(max(2,r))logmax(2,r) < Co¢(r)log 2nr.

Hence (3.2.7) follows.

PROOF OF COROLLARY 3.3. It follows form the assumption that

9 Y o 520X + Y)92(X)

< 191(X+Y) (92(X+Y)-92(X))I+ (91(X+Y)-91(X))192(X+Y)]
' 2 + V) le2x) |

<Cc 'Y
- ®*(|z])

By the almost decreasingness of ¢(r)/r, we have

0 dt < |2AS) dt<2800) (o oy

Pl r r

I I

Hence

o e(lyl) <" o(|yl)
N |

Therefore we have (3.2.5). And, by the boundedness of 91 and 1/92, we have
(3.2.6).

At the end of this section, we give examples of the pointwise multiplers on
bmog(R™).

EXAMPLES 1. By Corollary 3.3, the following are pointwise multipliers on

meqg(Rn):
1 sin X 1 sin®*( x|)

®*(|z])” @*(|z|])’ 1+Ix’ 1+1xI’
EXAMPLES 2. Assumethat 1< a and f < a, or assume that 1 < a < <

a+ 1 and ¢(0+) > 0. By Proposition 3.2, the following are pointwise multipliers
on bm0¢(R”):

sin x 7 sin®*(Ix )?
A+ix)e @x(|z])>

Janson [10, p.196] has given a pointwise multiplier on bmo(Tn) which Is not

continuous. We also construct a pointwise multiplier on bmog(R™) -which is not

continuous.
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EXAMPLES 3. Let

2
- and ‘I/*(T) = ¢(D at.
d.(r) min(.r) |

If +)(t)/t is almost decreasing then the following is a pointwise multiplier on
bm°¢(Rn):

9X-_ (I)*()(‘)‘

In fact, g(X) CsinY,(|z|)for z| < 2, and g(x) = C'/®*(|z ) for |z| > 1. Since
o satisfies the condition (3.1.1), Y.(|z|) is in bmoy(R™), and so sin¥,( X ) is

in bmoy(R™) by Lemma 2.3. C'/®*(|z|) is a pointwise multiplier on brmog(R™)
by Example 1. Hence, for r < 1/4/n, we have the inequality (3.2.7). And, for
r > 1/\/n, in a way similar to the cases 3 and 4 in Proof of Proposition 3.2,
we have the inequality (3.2.7). Then 9 is a pointwise multiplier on bmog(R™).

Moreover, if ¥*(r) tends to infinity as I tends to zero, then 9 is not continuous.

3. Pointwise multipliers on subspaces of bmoy(R™).

In this section, we consider the pointwise multipliers on bmogs(R™) N VeRnN)

and on ubmbmog(R™ ), which are subspaces of bmog(R™). In these cases, we have

results similar to the torus case, 1.e. the pointwise multipliers reflect the only

local structure of these spaces.

bmog(R™) N LP(RN) is a Banach space equipped with anorm | . |pmo, + . ILP.
And this space has the generalized Chebyshev's inequality (1.1.4). Therefore,
in a way similar to Lemmas 1 and 2 in Chapter |, we have that any pointwise
multiplier from bmog(R™) N LP(RN) to bmog(R™) is a bounded operator.

And ubmbmogy(R™) is also a Banach space and has the generalized Chebyshev's

inequality. Then any pointwise multiplier from ubmbmog(R™) to bmog(R™) is a

bounded operator.

We have the following theorems similar to the torus case.

THEOREM 3.4. Suppose that ¢(r)/r s almost decreasing.

(1) Let 1 € p < oo. Then a function 9 is a pointwise multiplier from

bmog(R™)NLP(R™) to bmog(R™) if and only if9 is in bmoy(R™)NL>(R™).
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where

2

At) dt

min(l,r) 1

(3.3.1) p(r)  é(r) /

|n this case
PWM (bmog(R™) N LP(R™)) = bmoy(R™) N L>™(R™),

and the operator norm of 9 E PWM (bmog(R™) N LP(RN)) s comparable

o

|9 Bmo, + g Loo.

(1) A function 9 s a pointwise multiplier from bmogz(R™) N Loo(RN) to
bmog(R™) if and only if9 s in bmog(R™) N Loo(Rn). In this case,

PWM (bmog(R™) N L®(R™)) = bmoy(R™) N L>=(R™),

and the operator norm of 9 E PWM (bmog(R™) N Loo(Rn)) is comparable

(6

|9 Bmo, + 1gLOO.

THEOREM 3.5. Suppose that ¢(r)/r s almost decreasing. A function 9 IS
a pointwise multiplier from ubmbmog(R™) to bmog(R™) if and only if 9 is in
bmoy(R™) N Loo(Rn), where 3 is defined by (3.3.1). In this case,

PWM (ubmbmoyg(R"™)) = bmoy(R™) N L=(R™),
and the operator norm of 9 E PWM (ubmbmoy(R™)) 4s comparable to

l9llBMoO, + ||9]| Lo

To prove these theorems, we show the following Lemmas:

LEMMA 3.6. Let 1 < p < oo. Then there s a constant C > a such that, for
any f E bmoy(R™)) N LP(Rn)) and for any cube I(a,r),

(3.3.2) M(f,a,r)| < C(||fllBMO, + || fllLr)@u(r).
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PROOF. If p oo, then (3.3.2) is clear. We assume that 1 < p < oo. Let

1= I(a,r). Forr > 1, it follows from Holder's inequality that

1/p
< || fllze-

. 1 5
IM(j,ar) < ‘I—‘/I\f(w)\ dz

And for r < 1, 1t follows from Lemma 2.5 that

M(j,ar) < M(j,ar)- M(j,al + M(j,al)

Hence (3.3.2) follows.

LEMMA 3.7. There s a constant C > aAsuch that, for any | E ubmbmoy(R™)

and for any cube I(a, r),

(3.3.3) IM(j, &, 1) < Cllj |ubmbmo, P«(T).

PROOF. Forr > 1, let j be the smallest integer satisfying r < 2!. Then

1 | 21n |
n lj(X) dz < n sup l1(X)1dX

(3.3.4) M(|fl,a,r) <
[ f(a,2i) r  bERn feb,!)

< 2n SUp MO(va1 1) T Sup IM(J1 b1 1)‘ ’

o bERN bERN

Hence we have

‘M(j,a,r) <C ] |ubmbmo¢-

And for r < 1, we have by Lemma 2.5,

> MO(],at)d <C
f _

IM(J,a,1) - M(J,a IV < C t

| | BMmoO, .

and

(M(f,a,7)| < Cllf]lubmbmoy ®(T)-

Therefore, we have (3.3.3).

The following lemma shows that the estimate (3.3.2) Is sharp.
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LEMMA 3.8. Let 1<p <o0o0. For any aE Rn, let

fa(z) = u(]z — a]) — 2u(1):

Then f, 18 in bmoyg(R™) N LP(R™)), and

(3.3.5) | fa BMoy + fa Lp < Ca,

(3.3.6) M(fa,a,r) > Cy®,.(r) forr <1,

where C; > 0 and C, > 0 are independent ofa E Rn and r E R+.

PROOF. By (3.2.3) and Lemma 2.3, we have f E bmog(R™) and falgao, <

C independently of a E Rn. Sincethe support of fa isincluded in {x: Xx-a < I}
and f(x) < #(1)log x - al, we have f E LP(Rn) and lfair < C,, where the

positive constant C, is dependent on p and independent of a E R". Hence we

have (3.3.5). Next, we show (3.3.6). Since ®.(r) is decreasing for r < 1, we have
fa(2) 2 u(r/2) — ®u(1) 2 CPu(r/2) 2 C'®u(r) for|z—a| <r/2, r <1.

Hence

1

M(fa,a,r) 2
r {|lz—a|<r/2}

fa(x)dx > C"®+(r) forr < 1.

LEMMA 3.9. Let 1< p < oo. If9 s a pointwise multiplier from bmo,(R™) N
LP(Rn) to bmog(R™), then 9 is in L=(R™) and lIQlE00 < C If op where C > 0

18 Independent of g.

PROOF. For any cube | = I(a,r) with r < 1, we define a function h E
bmos(R™) N LP(RN) as follows:

exp(i®*(Ix - a)) - exp(i®*(r)) x- a <t
h(X) =
0 r < X - al.

Then, by Lemma 2.3, we have h puyo, < CO|®( .) Bmo,. And, since h(x) <
2 and the support of hisincluded in I(a, 2), we have |lh Lp < Cpo Since 9 is a

bounded operator, we have

|gh \bmo¢ < g op( hIBMO., 1 ‘h LP) £ C ‘g Op,

36



Independently of |. |t follows that

(3.3.7) MO(gh, a,4r) < Cl gllop¢(4r).

Let n; and n2 be constants such that logn: 7/ ¢(1) and 1 <12 < ny;. And let
Lr={z €R":r/m < |z —a| <r/n2}.

Then we have, for x E L,

— and

2.(|z — af) — ®u(r) 2

r/n2

since ¢(r)/r is almost decreasing. So the inequality

- 26
¢ —1|> — for0<0<n
s

implies that h(x) > C'¢(r) for x EL,. Let & M(gh, a, 4r). Then we have,
by considering the support of h,

(3.3.8) MO(gh,a,4r)= lgh(x)-aldx
| (a,4r)
> | lgh(x) - o dx + o|dx> | (9h(x) - ¢ + o) dx
L, | (a,4r)\I (a,2r) L,
> lgh(X)1 dx > C'¢(r) g(X)1 dx.
Ee L

From (3.3.7) and (3.3.8) It follows that

lg(z)|dz < " glop.

Letting r tend to zero, we have

g@) <e€"lglop ae and  |gloo < C" glop.

Now we prove the theorems.
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PROOF OF THEOREM 3.4. (I) Case 1 < P < o0o. Suppose that 9 is in

bmoy(R™) N Loo(Rn). For any | = I(a, r) and for any | E bmog(R™) N LP(RN),

by Lemma 3.6, we have

MO(Q. | ®,(r)

<C(I| Bmo, + Il LP) 9 BmoO,-

Therefore, by Lemma 2.12, we have

119 BMo, S C( | BMos,+ | LP) 9 Bmo, +2 | BmMO, 9 Loo

which shows that 9 is a pointwise multiplier from bmog(R™) N LP(Rn) to
bmog(R™), and

|g‘ op < C(I 0l Bmo, + I Loo).

Conversely, suppose that 9 is a pointwise multiplier from bmogz(R™) N LP(Rn)

to bmog(R™). By Lemma 3.9, we have 9 E Loo(Rn) and 19 Loo < Cl 9 10p. From

Lemma 2.12 i1t follows that

sup | | || |
I=1(a,r)
< Cllgllop(|l fllBMO, + || fllL?).
Taking | = @ in Lemma 3.8, we have,
sup ‘I’*(T) MONa.a.r) < (:"|9 op-
r<l,a€R™

And, for r > 1, we have

d,(r) $,(1)

—~MO(g,a,7) < 2——||gllz= < C"||9llop-

Hence g 1s in bmoy(R™) N L*°(R™), and

l9 BMo, + IgLoo £ C 9 op.

(i) Case p = oo. Suppose that 9 is in bmog(R™) N Loo(Rn). For any cube

1= I(a, r), we have

‘ | o(r) - Loo é(r) - Loo 9’||BMO¢-



Therefore, by Lemma 2.12, we have

\Ilg BMoy, < C 1 £00 gt BMOy, T2 | BMOy |Ig £00

which shows that 9 is a pointwise multiplier from bmog(R™) N Loo(Rn) to
bmogs(R™), and
lo9 op < C(l g‘ Bmo, + 19 £o00).

Conversely, suppose that 9 is a pointwise multiplier from dbmog(R™) N LP(RN)
to bmog(R™). By Lemma 3.9, we have 9 E Loo(Rn) and Ilg £00 £ C 9lop. Since
1 E bmog(R™) N LP(RN), 9 is in bmog(R™) and I9|BMO¢ < C glop.

PROOF OF THEOREM 3.5. Suppose that 9 isin bmoy(R™)NL*°(R™). For any

| E ubmbmoy(R™) and for any cube |  I(a, r), by Lemma 3.7, we have

2.(r)

IR O

< C fllubmbmo, 9 BMO,-

From Lemma 2.12 1t follows that

1lg BMo, < Q1 wbmbmo, |9]lBMoO, + 21/ |BMO, I 200

which shows that 9 is a pointwise multiplier from ubmbmog(R™) to bmoys(R™),

and

lgllop < C(llgllBMO, + |lgllze)-

Conversely, suppose that 9 is a pointwise multiplier from ubmbmo¢(Rn) to
bmog(R™). Since bmog(R™) NL2(R™) ¢ ubmbmoy(R™), by Theorem 3.4, we have
that 9 isin bmoy(R™) N Loo(Rn) and

g BMO, T \Ig t00 S C Igi Op

Next, we give a sufficient condition for the pointwise multipliers on bmog(R™ )N
LP(Rn).

PROPOSITIO 3.10. Suppose that ¢(r)/r is almost decreasing. And suppose
that 9 1s bounded and that there iIs a constant C > 0 such that

\ ‘ for x,YE R" with Iyl <1,

39




where &, is defined by (3.2.2). Then g is a pointwise multiplier from bmog(R™)n
LP(R™) to bmoyg(R™) (1 < p < o0), and from ubmbmog(R™) to bmog(R™).

PROOF. Forr < 1/y/n, we have

2 2C
|
And, for r > 1/4/n, we heve
c< #r)
=
IVIO(g, 1) €2 g Loo and  a.(r)

Hence ¢ is in bmoy(R™) N L>(R™).

4. Pointwise multipliers on h1(Rn).

The end of this chapter, we characterize the pointwise multipliers on the local
Hardy space h1(Rn).
By (3.3.4), | ubmbmo is equivalent to

(3.4.1) sup MO(f,ar)+ sup M( f|,ar).

r<l,aERn r=>| ,aERn

Goldberg [8, Corollary 1] introduced ubmbmo(Rn), using (3.4.1), by the symbol
bmo, and showed that it is the dual space of h1(Rn).
Recall the properties of h1(Rn). Let Rj be the j-th Riesz transform given by

where [ is the Fourier transform of |. Fix u E Cs°(R™) satisfyingu - 1in a

neighborhood of the origin, and define

- - @"‘
a

Then | E R*(R™) if and only if I,rll, ... ,rnl E L1(RN) (see [8, Theorem 2]).

Also as In the proof of Corollary 1 1n [8], we have

(3.4.2) |7 Ry fllubmbmo < C||f||zee  for f € L*°(R™).
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THEOREM 3.6. Let

Then
PWM(R'(R™)) = bmoy(R™) N L=(R™),

and the operator norm of 9 E PWM(hl(Rn)) Is comparable to

lo BMoO, + |g”£oo.

PROOF. Suppose that 9 is a pointwise multiplier on hl (Rn). By the duality
and by Theorem 3.5, 9 is in bmoy(R™) N Loo(Rn) and the operator norm of
9 E PWM(hI(RN)) is comparable to 19|saro, + 0l £o0.

Conversely, suppose that 9 is in bmoy(R™) N Loo(R™). Let hE h*(R™). Then,
for any | E C§°(R™), by the duality, Theorem 3.5 and (3.4.2), we have

\
(riRkDghdx < C Il go IN n forj,k 1,...,n.

Hence Ryrj(gh) is a bounded measure on R™. Thus, by the n-dimensional F.
and M. Riesz theorem, rj(gh) E LI(Rn) (Jj 1,...,n). Since gh E LI(Rn) is

clear, we have gh E hI(R"). Therefore 9 is a pointwise multiplier on hl(Rn).
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V. Pointwise multipliers on Morrey spaces

and on the spaces of functions of bounded mean oscillation

with the M uckenhoupt weight.

In this chapter, as consequences of Theorem 2.1 in Chapter |1, we characterize

the pointwise multipliers on Morrey spaces and on the spaces of functions of
bounded mean oscillation with the Muckenhoupt weight. One of the latter Is a

generalized Morrey space.

1. Pointwise multipliers on Morrey spaces.

For 1<p < oo, 0< X< nand wW(x, T) = r*, bmow,p(Rn) is the Morrey space.

We characterize the pointwise multipliers on the Morrey space.

THEOREM 4.1. Let1<p <o00) 0< XA <nandw(x,T) — r*. Then
PWM(bmo,, ,(R™)) = bmoy, ,(R™) N L>=°(R™).
Moreover) the operator norm of 9 E PWM (bmow,p(Rn)) Is comparable to

|g” pmow,p T 9 Loo.

PROOF. Case 1. 0< A < n. Since w satisfies from (2.2.1) to (2.2.4), we have

by Theorem 2.1
PWM(bmoy, ,(R™)) = bmoy~ ,(R™) N L*°(R™),

where w* —w/®,® = &, + &, and

P

U,(a,r) = P 1- max(2, a[,T)-(n-A)/p|

o and

p
\Ilz(a,r) —~ . % \ r—(n")\)/P ~ max(2, la ,T)—(H—A)/P| ‘ .

¥i(a,r) is comparable to 1, ¥y(a,r) is comparable to r~(*»=2) for T < 1, and

Woca, T) is less than a constant for T> 1. Hence,

P T <1
w*(a,T) Is comparable to

W(a1T) ""TA T> 1.
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Since MOw- ,p(g,a,r) < C Il o for r < 1, we have
bmoys »,(R™) N L*=(R™) = bmo,, ,(R™) N L=(R™)
and
lg lemoy.» + g Lo is comparableto g lemow,p + Ig Loo.
Case 22 A 0 then
bmo,, ,(R™) = LP(R™) + {constants},

i.e. for any | E bmow,p(Rn), there are Ip E LP(Rn) and cfFE e such that
| 1Pp+cf, and | bmow,p is comperable to lIP ILP + cf . Therefore

PWM (bmoy ,(R™)) = LP(R™) N L*=(R™),

lglop is comparable to lglLP + IgLoo.

The Proof iIs complete.

|lext we define, for 0< p<ooand 0 < A < n,

M, A(R™) = | — | 1f(2)I? dz < oo| ,
I=1(a,r) r I
l1p

1l a,, = sup
|=1(a,r)

1
r—;‘jI | f(z)|P dz

This is also called the Morrey space. M, x(Rn) is a Banach space for 1 < p < oo
and a complete gquasi-normed linear space for 0 < P < 1, and satisfies the
condition (1.1.2) in Chapter I. Moreover M, x(R™) includes L2, (R™). From

Theorem 1.1 i1t follows that
PWM(Mp, A(R")) = L=(R") and ||g|lop = |lgllL,

where g lop is the operator norm of g E PWM (M, x(R")).

On the torus,

b A 1T Y My L T7)
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Then, in contrast with the case of R™, we have

PWM (bmoy »(T")) = L2(T").

2. Pointwise multipliers on the spaces of functions of bounded mean

oscillation with the M uckenhoupt weight.

We recall the definitions of the classes of weights A, (see Muckenhoupt [17]
and [18]). A locally integrable and nonnegative function u Is said to belong to
A,, 1 <P < oo, If there Is a constant C such that

ol

|

for any |, and is said to belong to Al, If there is a constant C such that

u(x) dx < Cessinfu
| |

for any |I.

THEOREM 4.2. Let1<p<oo O0<a <mn(p, (n+p)/n),1<g<(n+p)/na
and

u(Xx) dx ‘ , u € A,.

w(l) = ‘

I
Then

PWM(bmo,, ,(R™)) = bmoy. ,(R™) N L>=(R™),
where W - w/®, & =&, + &, and
P

u(x)a/P x -n(l-a/p+1/p) dx
|(O,max(2,lal,r))\I1(0,1)

(421) \Ifl(a, r) - |

(4.2.2)

P
u(x)a/Px - al-n(i-a/P+1/P) dx
| (armax(2:lal,r))\ 1 (a,r)

‘Dg(a, 7‘) - |

Moreover, the operator norm of 9 E PWM/( bmow,p(Rn)) is comparable to

|9llbmoy. , + 9]l L.
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THEOREM 4.3. Let1fp<o0)0<a<l1 1<g=£ 1/a and

w(l) - ‘ Iu(x)dx‘ . ueA,
Then
PWM (bmow »(R™)) = bmogs »,(R™) N L2(R™),
where
(4.2.3) war - — WM& _

Moreover) the operator norm of 9 E PWM (bmow,p(Rn)) s comparable to

ngbmow*,p + |lg|l L

In the Theorem 4.3, bmow,p(Rn) Is a generalized Morrey space.
To prove these theorems, we state some basic properties of A, weights. (See

for example [7].)

LEMMA 4.4. Ifu belongs to Ap) 1 < p < oo) then there are constants C > 0
and 6 > 0 such that

d fE :z:)d:r ‘E|
B fI“ 11

for any | and for any measurable set E C 1I.

LEMMA 4.5. Ifu belongs to Ap) 1 < p < ooy then for 0 < a < 1 there 3 a

constant C > 0 such that

1 ‘ 1 “ 1
u 1] \

LEMMA 4.6. [fu belongs to Ap) 1 < p < ooy then for >0andfor0<vy<1

u(z)* dx <

u(Xx) dx

u(z)® dx.

there s a constant C > 0 such that

2r  Ji(a,t) U(X) dX
dt

nB+1
C—l o - T t S C,
U(x)'Ix - g|=n(1=7+5) dx

| (a,2r)\l(a,r)
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for any a E Rn andr > 0.

LEMMA 4.7. Ifu belongs to Ay,) 1< p < (o) thenfor p 2 p and p' > 1 there

Is a constant C > 0 such that

u(x) x - a-np dx
C-1 < HaR\(ar) <C

r-"P u(x)dx
| (a,r)

for anya ER™ and 0 < 2r < R.

PROOF OF THEOREM 4.2. By Lemma 4.4, w satisfies from (2.2.1) to (2.2.4).

It follows from Lemma 4.6 that

R w(ajt)l/p "
tn/p+1

IS comparable to

u(X)a/P X - al-n(l-cx/p+1/py dXx,
| (a,R)\I(a,r)

for 0 < 2r € R Therefore, we have (4.2.1) and (4.2.2).

PROOF OF THEOREM 4.3. If u belongs to Ay then u®/? belongs to

A(g—1)a/p+1- Therefore, by Lemmas 4.6, 4.7 and 4.5, the following are com-

parable

R w(a /P

, L
tn/p+1 .

r

u(z)?/? x - al-N(l-cx/Br1/p) dx,
| (a,R)\I(a,r)

r-n(l-cx/p+1/p) u(a,)a/p dx,
| (a,r)
r-n/pw(a, r)l/p,

for 0 < 2r < R. This shows (4.2.3).
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V. Pointwise multipliers on the Lorentz spaces.

Let (X, ) be a measure spase, and let A and B be linear spaces of functions
defined of X. We denote the set of all pointwise multipliers from A to B by
PWM(A, B).

It is well known that, for 1jp = 1jpl + 1jp2, 1 < P < oo,

PWM (LP*(R™), L?(R™)) = LP2(R™).

In this chapter, we generalize this equality to the Lorentz spaces.

1. Definitions.

Let (X, ) be a a-finite measure spase, and let A, B ¢ M eas(X) be complete
guasi-norned linear spases. Assume that A and B have the generalized Cheby-
shev'sinequality (1.1.4), respectively. Then, in away similar to Lemmas 1.3 and
1.4 in Chapter |, we can show that any pointwise multiplier from A to B Is a

bounded operator.

We recall the definitions of the Lorentz spaces. For a muasurable function |,

we define the distribution function u(f,s) as follows:

u(f,s) p{ze X : f(xX)I>s}) fors>O.
And we denote by f* the rearrangement of f:
j*(t) inf{s>0:u(f,s) <t} fort>0.

This Is a non-negative and non-increasing function which Is continuous on the

right and has the property

u(f*,s) = u(f,s) fors> 0

If If(x) < Ig(x) a.e then

f*(t) < g*(t) fort > 0.
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Now the Lorentz space L(p,q)(X) is defined as follows. For 0 < p < oo and

O< g < oo,

L»9(x)= f E Meas(X): t(afp)-1(f* (t))g dt < ex
O

oo Ifg
t(afp)-1(f* (t))q dt\ |

| f L(p.q) — ‘
O

And for 0<p < oo and q- oo,

LPo)(X) = | f E M eas(X) :suptlfpf*(t) < 00
t>0

‘Ifl L (p,00) Suptlfpf* (t)

t>0

Then, for 0 < p < oo, we have

LEP(X) = LX(X) and ||flle.n = IIfllzo-

In general, |T .. is a quasi-norm and L(p,g)(X) is a complete quasi-normed
linear space. If1 < p<ooand 1< q< oo, then it Is possible to replace the
quasi-norm with a norm, which makes L(p,q)(X) a Banach space.

Moreover, the set of all simple functions is densein L(p,d)(X) for 0 < p,q < oo.

Let 0<p<ooand 0< g < ¢ < oo. Then

L(PaQI)(X) - L(P,fh) (X)

and

q2 1/Q2 a1 1/91
?) Nl 2 a2y < ;) | fll 2. 00)-

The Lorentz spaces have the generalized Chebyshev's inequality (1.1.4). So
any pointwise multiplier from L(p,q)(X) to L(p/,q)(X) is a bounded operator.

However, since the Lorentz spaces have the property (1.1.2), we can use a method

similar to Theorem 1.1.

2. Theorem.

Assume that X is expressible as a countable union of sets X1 C X such that

w(Xi) < oo (i - 1,2,...). Any bounded function whose support is included
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Case 22 For any f and g, there are sequences {f]} and {Q]} of simIple functions

such that

fl<f2<... and f] »f ae,

g1 <g2<... and g;— g a.e.

Then

tCe(ryg)*(t) at < tCe(M)* () (g))*(t) dt < 71 (1)g* (1) at.

O 0 0

Hence we have

S S
tCt(fg)* () dt < £ * (1) g* (1) dt.
O 0

LEMMA 5.3. Let 0 < g<P and

If f € LPu:91)(X) and g € L(P292)(X) then fg € L(P"?)(X) and

| f9llLeo < I fllzena gl

PROOF. Ifg 1thenP>1and (1/p) - 1< 0 By Lemmab5.2, we have

T H(p)-1(Fg)* (1) dt

O
< | tp)-1f@or®d- || thPLir) | [ thPgr@) | Ot't
O 0
1/q 00 Qo 1/
P2 gr (1) | |

<|[ (o) SO,

0 L

For 0< < P, since p/g = 1, we have

‘fg”%(p,q) - ”Ifg ql'—(p/CIJ)
< 1If qliLP/aaid) 19 qlLP2aQ2e) = f 17 mre| 9 5 e

LEMMA 5.4. Let 0<P,qg< oo and

1 1 1 q
- =+ g =P = =py.
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For any g € L\P292)(X), there is f € L(P19)(X) such that

”fg”L(P:Q) - HfllL(PlrQI)Hg“L(P:::‘M)'

PROOF. Let f ¢gQ2Ql. Then we have the above equality.

Now we prove Theorem 5.1.

PROOF OF THEOREM 5.1. If 9 isin L(P2,Q2 (X) then, by Lemmab’.3, 9 isin
PWM(L®+1)(X), L(p,g)(X)). Moreover, we have by Lemma 5.4

“gHOp i Hg”L(Pz,qz)-

Conversely, assume that 9 isin PWM(L(PI,gl)(X),L(p,q)(X)). Let

0 r € X\ X;,
gi(z)= | g(x) X EXi and IgX)| <1,

; X E Xi and Ig(x)| > ¢,

fori =1,2,.... Then g isin L(P2 ,02) (X.). By thefirst half of the proof, we have

‘gi“Op e “gi”L(Pz,n) -

For any f E L(P1:a1)( X)), fg isin L(p,q)(X) and (fgi)* < (fg)*. Hence

1fgi 76,00 < IfglL(p,q) <00 fori-I,2, ....

By the uniform boundedness theorem, thereis a constant M, 0 < M < oo, such
that

sup lgi IL(P2@?) - suplgi Op =M.

Since

g1 <g2 <... and g;i =0

we have 9 E L(P2,92)(X).

The proof Is complete.
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