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ABSTRACT

In this thesis, we propose the the non-perturbative theory for full counting statistics
(FCS) in solid state entangler (SSE) based on Nambu-Gor’kov and Schwinger-Keldysh
field theoretical non-equilibrium method. Based on the theory we study the currents
and cross correlation of the current noise of SSE to get the further understanding
of physics of quantum entanglement. The theory can be applicable to the trans-
port properties in the region where Coulomb blockade and Andreev reflection coexist,
since tunneling processes are taken into account non-perturbatively in the presence of
arbitrarily large charging effect as well as electromagnetic environment effect. Con-
cerning the latter, we treat SSE with ohmic resistance phenomenologically in the
spirit of Caldeira-Leggett theory.

The SSE considered is a coupled ultra-small double tunnel junction, structure of
which consists of a common superconducting electrode/normalconducting left and
right ultra-small central electrodes (islands)/normalconducting left and right drains.
Each of islands are capacitively coupled with gate electrodes to control tunneling. We
call the SSE double S/N/N capacitively coupled single electron transistors (double
S/N/N C-SET ). This kind of SSE is called the Cooper pair splitter (CPS) in general.

Based on the theory, we derive explicit expression for cumulant generating function
(CGF) for FCS. Explicit expressions for the currents and cross correlation of current
noise for the double S/N/N C-SET are obtained as the first and second cumulants
from CGF, respectively. Since we are interested in extracting and controlling quantum
entanglement information by the charging effect, we mainly focus our attention on
the study of SSE with U < Δ (U : charging energy, Δ: energy gap of superconductor)
so that sufficiently wide superconducting subgap region can be expected.

We show that, in the subgap region there are three kinds of currents due to the
direct Andreev reflection (dAR), crossed Andreev reflection (cAR) and elastic co-
tunneling (EC). Each of the currents show Coulomb blockade related phenomena
(Coulomb gaps, Coulomb staircases, and Coulomb oscillations) due to the charging
effect.

Since contribution to the cross correlation of current noise SLR(0) comes from
currents due to cAR and EC in subgap region, SLR(0) is strongly influenced by the
charging effect. It is shown that SLR(0) is always positive (bunching correlation)
if two C-SETs are biased symmetrically. The bunching correlation is not genuine
one (antibunching correlation) peculiar to the normal fermion flow. It is the direct
consequence of the fermion flow with quantum entanglement. SLR(0) also shows
bunching-antibunching crossover followed by restoration of bunching correlation as
bias voltage increases; i.e., SLR(0) becomes negative only in a narrow window of bias
voltage as far as bias condition for two C-SETs is not so asymmetric enough. As the
asymmetry in bias condition becomes sizable, SLR(0) shows bunching-antibunching
crossover only and never shows the restoration of bunching correlation.

We also show that the ohmic resistance strongly influences on SLR(0), partly be-
cause of increase in Coulomb Gap of cAR current, and partly because of decrease in
magnitude of cAR current due to the de-coherence by ohmic dissipation.
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We propose the method of extraction and control of quantum entanglement infor-
mation by the ferromagnetic ordering. We consider double S/F/N C-SET, structure of
which is the one with the nonmagnetic islands of double S/N/N C-SET is replaced by
ferromagnetic islands. It is shown that only cAR current (EC current) contributes to
SLR(0) if the half metal ferromagnetic islands are employed as anti-parallel (parallel)
alignment.

Theoretical predictions stated above are made for the first time in this study and
the results lead us to the new stage of the study on bunching-antibunching nature of
current noise cross correlation in the presence of quantum entanglement.
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Chapter 1

INTRODUCTION

1.1 Historical Background of the Study
Recently quantum information technology such as quantum cryptography, quantum
teleportation and quantum computers have attracted much attentions. In 1935 Ein-
stein, Podolsky and Rosen raised an objection to the quantum mechanics, so called
EPR paradox [1]. In 1964 J. S. Bell found inequality for the measurements that
exactly holds as far as observations are understood within the local realism. The in-
equality (Bell inequality) insists that there should exist phenomena which cannot be
explained by the local realism but quantum mechanics can describe these phenomena
as well as those explained by local realism. The existence of the quantum entangle-
ment was first proved by an experiment of measuring the polarization of photons [2]
through the test of Bell inequality [3]. Therefore, the essence of what once puzzled
them is nowadays referred to as quantum entanglement [4] or non-locality of quantum
mechanics. Although EPR paradox is not paradox but their criticism is very much
important to understand quantum mechanics correctly. Because of that, the EPR
paradox is often called creative error. Discovery of the Bell inequality is considered
one of the most profound discoveries in science.

As another stream of research trend, on the other hand, physics in ultra-small
systems has attracted much attention among researchers: physics of mesoscopic sys-
tems [5]. The study of mesoscopic systems was initiated around middle of 1980’s side
by side with the advance of micro-fabrication technology. Researches on the meso-
scopic phenomena have been giving a big impact on not only fundamental physics
but also application-oriented science. In order to understand physics in mesoscopic
systems, we need much deeper understanding of basics of statistical mechanics; reser-
voir, insufficient energy average, non-equilibrium, noise (fluctuations) and so on. We
have to often encounter the violation of fluctuation-dissipation theorem. Landauer’s
famous words, “ The noise is the signal.” expresses the importance on the research of
the physics of mesoscopic system [6]. As for application-oriented direction, Coulomb
blockade, which is one of the typical mesoscopic phenomena due to charging effect,
for example, is considered a promising operation principle of single electronics which
is expected as a new type of electronic basic devices in 21st century. Research and
development of quantum computer which utilizes Coulomb blockade are also going
on.
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1.2 Present Research Status of Quantum

Entanglement in Solid State Entangler

There have been so far many experimental studies on the quantum entanglement.
Historically most of researches have been made in terms of photons, and some of the
entanglement-based technologies are already being used although they still stay at
the experimental level. Along the second research trend stated above, researches on
the the quantum entanglement in ultra-small (mesoscopic) solid state entangler (SSE)
have been extensively going on for the past ten years [7–13].

In 2009 Hofstetter et al. [7] reported an experimental research which showed
synchronized Coulomb oscillation. Their experimental setup is the double tunable
quantum dots coupled to a superconducting electrode and double normal electrode
(Fig.1.1). They call it Cooper pair splitter (CPS) and insisted that they observed
the quantum entanglement. However they did not reported the cross correlation of
current noise.

The Cooper pair in BCS superconductivity is a spin singlet state,

1√
2
[| ↑ ↓〉 − | ↓ ↑〉] ,

which is nothing but spin-entangled state. The CPS utilizes possible transmission of
the two electrons as a constituent of the Cooper pair to two different normalconducting
paths. This kind of transmission had not been observed for a long period until report
of Hofstetter et al., although Andreev theoretically discussed Cooper pair dissociation
into two electrons and vice versa at superconducting (S) and normalconducting (N)

a

b

Fig. 1.1 (a) The experimental model by Hofstetter et al. An InAs nanowire
is contacted by a central superconducting lead (blue) and two metallic leads
(green). Two quantum dots (QD1 and QD2) form between these contacts (dotted
circles). They are independently tunable by two top gates, g1 and g2. (b) The
band diagram in the non-local measurement. The gate voltage of QD1 Vg1 is
fixed and the gate voltage of QD2 Vg2 is varied. [7]
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interface in the case of single S/N junction [14]. This is not the pair breaking process
due to external fields, but one of the higher order equilibrium tunneling process at
S/N interface. Original one is called direct Andreev reflection and the other called
crossed Andreev reflection.

It is instructive to note that measurement of the cross correlation of current noise in
this configuration is an analogue of measurement of interference between transmission
and reflection noises in photon beam splitter. Historically this is called Hanbury-
Brown and Twiss effect in astronomy, since they measured the apparent angular size
of Sirius, claiming excellent resolution [15].

As for other experiments of CPS, studies of semiconducting nanowires [8–10], car-
bon nanotubes [11, 12], and graphene [13] have been made. They reported positive
non-local conductance. Although there is no doubt that the charging effect is es-
sentially important to extract and control quantum entanglement since systems are
ultra-small, these experiments were all made SSE with Δ < U (Δ: the energy gap of
the superconductor, U : charging energy). In this situation, only small signal can be
observable. This is the reason why these experimental resorted to not current itself
but sensitive non-local differential conductance tuned by gate voltage only in a narrow
range of bias voltage. Nevertheless, these experimental findings still contain rather
large measurement errors, so that much more careful observation should be required
to get reliable signals of quantum entanglement. In the opposite case Δ > U , on the
other hand, we can expect much larger signals of not only non-local conductance but
also currents. Furthermore, we can utilize even the bias voltage control as well as the
gate voltage control over the much wider bias range. Therefore, we mainly focus our
attention on the SSE with Δ > U .

So far many theoretical studies have been reported on current and cross correla-
tion of current noise or nonlocal differential conductance [16–28]. It is known that
the crossed correlation of fermion flow shows negative correlation (antibunching cor-
relation) [29, 30]. However it is not always true if fermion flow conveys quantum
entanglement. Positive current noise cross correlation, which is normally expected for
the bosonic flow and is called bunching correlation, has been shown theoretically for
a coupled two single S/N junctions (a superconducting electrode connected with spa-
tially separated two normalconducting electrodes) [19,22,24,25,31,32]. Among them,
current noise cross correlation based on full counting statistics (FCS) scheme was
studied for the structure similar to the experimental setup by Hofstetter et al. [24].
Although they took account of Coulomb interaction for the case Δ > U , they could
not show charging effect-related phenomena such as Coulomb gap, Coulomb oscilla-
tion and Coulomb staircase not only in the currents but also the current noise cross
correlation. Furthermore they did not take the electromagnetic environment effect
(EMEE) into consideration while EMEE should be inevitably important for the sta-
bility of Coulomb blockade [25]

Some other theoretical proposals was reported for SSE consisting of a superconduc-
tor connected with spatially separated two ferromagnetic leads [33,34] and discussed
bunching-antibunching nature. However, in this case also, the charging effect was not
taken into account.

1.3 Purpose of the Study and Organization of the

Dissertation

In this dissertation, we propose the non-perturbative theory for full counting statis-
tics (FCS) in solid state entangler (SSE) based on Nambu-Gor’kov and Schwinger-
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Keldysh field theoretical non-equilibrium method. Based on the theory we study the
currents and cross correlation of the current noise of SSE to get the further under-
standing of physics of quantum entanglement. The theory can be applicable to the
transport properties in the region where Coulomb blockade and Andreev reflection
coexist, since tunneling processes are taken into account non-perturbatively in the
presence of arbitrarily large charging effect as well as electromagnetic environment
effect. Concerning the latter, we treat SSE with ohmic resistance phenomenologically
in the spirit of Caldeira-Leggett theory.

The SSE considered is a coupled ultra-small double tunnel junction, structure of
which consists of a common superconducting electrode/normalconducting left and
right ultra-small central electrodes (islands)/normalconducting left and right drains.
Each of islands are capacitively coupled with gate electrodes to control tunneling. We
call the SSE double S/N/N capacitively coupled single electron transistors (double
S/N/N C-SET ).

Based on the theory, we derive explicit expression for cumulant generating function
(CGF) for FCS. Explicit expressions for the currents and cross correlation of current
noise for the double S/N/N C-SET are obtained as the first and second cumulants
from CGF, respectively. Since we are interested in extracting and controlling quantum
entanglement information by the charging effect, we mainly focus our attention on
the study of SSE with U < Δ (U : charging energy, Δ: energy gap of superconductor)
so that sufficiently wide superconducting subgap region can be expected.

We show that, in the subgap region there are three kinds of currents due to the
direct Andreev reflection, crossed Andreev reflection and elastic co-tunneling. Each
of the currents show Coulomb blockade related phenomena (Coulomb gaps, Coulomb
staircases and Coulomb oscillations) due to the charging effect. We also shows that
the cross correlation of current noise in double S/N/N C-SET exhibits a variety of
behaviors such as perfect bunching correlation, bunching-antibunching crossover, re-
stration of bunching correlation depending on bias condition. We also discuss the
effect of de-coherence caused by ohmic dissipation on these behaviors. We also dis-
cuss extraction and control method of quantum entanglement by the ferromagnetic
ordering in detail.

This dissertation is organized as follows. Preliminaries are given in Chapter 2.
In Chapter 3 we formulate the theory for full counting statistics for double S/N/N
C-SET. Here we drive CGF and currents and current noise cross correlation from
CGF and are analytically and numerically discussed in detail. In Chapter 4 we dis-
cuss the extraction and control of quantum entanglement by ferromagnetic ordering.
Chapter 5 is apportioned to summary.
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Chapter 2

PRELIMINARIES

2.1 Quantum Entanglement and Bell Inequality
In 1935 Einstein, Podolsky and Rosen proposed a thought experiment and raised an
objection to the quantum mechanics. It is called EPR paradox [1]. Although it is
known that EPR paradox is not a paradox, but this criticism played a very important
role in right understanding of quantum mechanics. In 1964 Bell discovered so-called
Bell inequality [3]. The inequality only holds for physical states without non-locality
and tells us the essence of quantum mechanics (non-locality of quantum mechanics
and existence of quantum entangled states). This ”no-go theorem” is considered one
of the most profound discoveries in science and opened the way to experimentally
check the existence of entangled states [2].

Note that there exist natural phenomena which cannot be described by local realism
and quantum mechanics specifies even such phenomena as well as those described by
local realism.

2.1.1 Bell inequality (CHSH inequality)

Bell inequality can be expressed in several ways. In what follows we explain CHSH
inequality which is most familiar expression for the Bell inequality [35]. Let us consider
a pair of particles which have quantum spins of 1/2 (si =

1
2
·σi, i = 1, 2). Components

along magnetization axes a, b, c and d are given by a = a · σ1, b = b · σ1, c = c · σ2

and d = d · σ2. Bell introduced the hidden variable λ which cannot be observed
but may affect the measurements in unknown way and its probability distribution
function satisfies

ρ(λ) ≥ 0 ,

∫
dλ ρ(λ) = 1. (2.1)

Suppose measurement results for a, b, c and d, which are determined by each direction
and λ, are A, B, C and D, respectively:

A(a, λ) = ±1, B(b, λ) = ±1, C(c, λ) = ±1, D(d, λ) = ±1. (2.2)

The expectation value of the product of the two components is, for example, given by

P (a, b) =

∫
dλρ(λ)A(a, λ)B(b, λ) . (2.3)

In this case CHSH inequality is given by

|P (a, b)− P (a, c) + P (b′, b) + P (b′, c)| ≤ 2 , (2.4)

which always holds as far as local hidden variable theory (local objective theory) is
concerned.
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2.2 Coulomb Blockade

Single electron transistor (SET) which realizes controlled single electron tunneling
was theoretically proposed by Likharev [36] and has been studied extensively for the
purpose of fundamental study of tunneling phenomena as well as exploration of future
device with entirely new operation principle. Basic structure of SET is an ultra-small
metallic double tunnel junction. Among them the SET with gate electrode capaci-
tively coupled to the ultra-small central electrode (island) is called C-SET (capacitively
coupled single electron transistor) [5, 36, 37]. Single electron tunneling phenomena is
caused by charging energy which becomes dominant in ultra-small systems (meso-
scopic systems). Under certain conditions the charging effect completely suppresses
tunneling of even an electron. This is called Coulomb blockade [5].

2.2.1 Charging effect

We consider the single tunneling junction. The change of electrostatic energy ΔE by
single electron tunneling is given by

ΔE =
(Q− e)2

2C
− Q2

2C
=

e

C

(e
2
−Q

)
, (2.5)

where C, Q and e describe capacitance of tunnel junction, effective surface charge
induced on the island and the charge of an electron. When ΔE > 0, namely Q < e/2,
tunneling is suppressed since energy of final state is higher than that of initial state.
At low enough temperatures, even single electron tunneling is prohibited in principle.
This is called charging effect and suppression of tunneling due to charging effect is
called Coulomb blockade. Because of that voltage up to Ec/e, where

Ec ≡ e2

2C
. (2.6)

is the single electron charging energy, no current flows. This voltage region is called
Coulomb gap.

2.2.2 Stability conditions for Coulomb blockade

In order to observe Coulomb blockade charging energy must be much larger than
characteristic energies of thermal fluctuation, quantum fluctuation, and charge fluc-
tuation.

(1) thermal fluctuation
In order to overcome the thermal fluctuation and observe the effect of charging

energy, it is necessary to satisfy the condition

Ec 	 kBT . (2.7)

Therefore upper limit of temperature to utilizing Coulomb blockade is given by

T0 =
e2

2kBC
. (2.8)
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(2) quantum fluctuation
Characteristic energy of quantum fluctuation is considered as the energy of the level

broadening due to tunneling. According to uncertainty relation, it is estimated as

�

RTC
, (2.9)

where RT is tunneling resistance given as

R−1
T ≡4πe2

�
|T |2N2

0 , (2.10)

where T is tunnel matrix and N0 is density of state at Fermi energy. If Ec is smaller
than this characteristic energy, tunneling loses its meaning. Therefore, it is necessary
to satisfy the condition

RT 	 Rq ≡ �

2e2
∼ 12.9[kΩ] , (2.11)

to see Coulomb blockade, where Rq is quantum resistance.

(3) charge fluctuation

T

Fig. 2.1 The single electron tunnel junction which has an inductance L as ex-
ternal circuit. The external impedance is Z(ω) = iωL.

Single tunnel junction which has an inductance L as external circuit as shown in
Fig.2.1, its eigenfrequency is ωL = 1/

√
LC, and charging Q is given by

Q = i

√
�ωLC

2
(b− b†), (2.12)

where b†(b) is creation (annihilation) operator of photon. The charge fluctuation is
straightforwardly calculated as

〈δQ2〉 = e2

2

�ωL

Ec

{ 1

exp(β�ωL)− 1
+

1

2

}
. (2.13)

In low impedance case where Ec � �ωL, the charge fluctuation
√〈δQ2〉 becomes

larger than e and Coulomb blockade can not be observed. In opposite case, Ec 	 �ωL,
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the charge fluctuation can be much smaller than e and Coulomb blockade is expected.
Since ωL is regarded as environmental mode, such an effect is called electromagnetic
environment effect. Although impedance of the circuit considered above contains
only inductance, ohmic resistance should be included in realistic case. Therefore,
electromagnetic environment effect has closely related to the energy dissipation of the
system.

μ1

μ2

2U

Fig. 2.2 The double tunnel junction. U ≡ e2/2CΣ is the single electron charging
energy in the island with CΣ ≡ C1 + C2 which is capacitance of island.

In the case of double tunneling junction as shown in Fig.2.2, the alteration in
stability condition of Coulomb blockade arises. This structure has a central electrode
(island) which is completely separated from external circuits, so that the charging
of the island is made only by electron tunneling. It means that the island charge is
quantized as a direct consequence of quantization of the electron charge in unit of
e. As a result the island charge never fluctuates even in the low impedance case.
Therefore the Coulomb blockade can be expected if

μ1 − μ2 < 2U , (2.14)

where
U ≡ e2/2(C1 + C2). (2.15)

is the single electron charging energy in the island. Note that the electromagnetic
environment effect should be still taken into account even in the double junction since
it affects quantitatively on the current-voltage characteristics.

2.3 Andreev Reflection
Let us consider the electron transport at the interface formed by superconducting
and normalconducting electrodes (S/N interface). If bias voltage eV is larger than
energy gap of the superconductor Δ, an electrons in normal conductor is able to
transmit into quasi-particle energy level of the superconductor. Reverse process is
Cooper pair breaking. An electron which is one of the constituent of a Cooper pair
is excited to the quasi-particle level and another constituent electron transmits into
the normalconductor. This is so-called quasi-particle tunneling.
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An interesting situation arises when one considers (at zero temperature) the flow
of the electric current, driven by an infinitesimally small bias, δμ = eδV , through a
clean S/N interface. In the normal conductor it is carried by quasi-particle, while in a
superconductor there are no quasi-particles with energies less than Δ, and the current
is carried by the condensate of Cooper pairs. Therefore, some conversion mechanism
should be required.

This mechanism was first pointed out by Andreev and is called Andreev reflec-
tion [14]. The process is schematically shown in Fig.2.3. An electron incident from
the normalconductor with energy E above the Fermi level EF cannot transmit into
the superconductor. Instead, it picks up another electron with the same energy, al-
most the same momentum and opposite spin, and forms a Cooper pair and joins the
condensate in the superconductor. Thus this process carries the net momentum and
the electric current of two electrons across the S/N interface. This leaves a hole on the
normal side. The Bloch velocity of hole, vk = ∇kεk is opposite to its momentum, so
the hole moves away from the interface and retraces the path of the incoming electron.
The whole process can, therefore, be considered as an reflection of an electron. The
reverse process, which is the Andreev reflection of a hole, realizes the hole-electron
conversion. Although we do not go into the details of this process, Andreev reflection
can be well described by the Bogoliubov-de Gennes equation method or tunneling
Hamiltonian method. In this dissertation study we take the latter method. In this
approach, Andreev reflection process can be described as higher order tunneling pro-
cess than the quasi-particle tunneling: the lowest order of Andreev mechanism is
proportional to |T |4, while quasi-particle mechanism |T |2 in terms of tunneling ma-
trix elements. Therefore, as much as the S/N interface is clean (S/N interface with
higher transmission rate), the Andreev process becomes more dominant. Remem-
bering Coulomb blockade becomes conspicuous for the low transmission interface, we
should realize that non-perturbative treatment of tunneling is indispensable to the
discussions in the situation where Coulomb blockade and Andreev process coexist.

E E

x x0

Electron

Hole

Cooper Pair 0

Electron

Electron

EF EF
Cooper Pair

Fig. 2.3 Andreev reflection

2.4 Quantum Statistical Method for Equilibrium

Systems

2.4.1 Time evolution of density matrix operator

Let us consider the system described by the following Hamiltonian:

H = H0 +H ′, (2.16)
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where H0 and H ′ are, respectively, unperturbed and perturbative parts of the Hamil-
tonian of the system. Let us consider the operator (observable) O. Expressions of the
observable in the interaction and the Heisenberg pictures are as follows:

OI(t) ≡ ei
H0
�

tOe−i
H0
�

t , (2.17)

OH(t) ≡ ei
H
�
tOe−iH

�
t . (2.18)

Expressing OH(t) in terms of interaction picture, we have

OH(t) = ei
H
�
te−i

H0
�

tOI(t)e
i
H0
�

te−iH
�
t

= U(0, t)OI(t)U(t, 0), (2.19)

where U(t, t0) is the time evolution operator for the state vectors in the interaction
picture and is defined by

U(t, t0) = ei
H0
�

te−iH
�
(t−t0)e−i

H0
�

t0 . (2.20)

Noting that the time evolution operator U(t, t0) satisfies

i�
∂

∂t
U(t, t0) = H ′

I(t)U(t, t0) , (2.21)

where H ′
I is the interaction picture of the H ′, we arrive at another expression of

U(t, t0):

U(t, t0) = T exp

[
− i

�

∫ t

t0

dt′H ′
I(t

′)
]
, (2.22)

where T is the Wick’s chronological operator.
The density matrix operator ρ is defined by

ρ ≡ e−βH

Tre−βH
, (2.23)

and it evolves in time according to the von Neumann equation:

i�
∂ρ

∂t
= [ H, ρ ] . (2.24)

The density matrix operator in the interaction picture is defined by

ρI(t) ≡ ei
H0
�

tρe−i
H0
�

t , (2.25)

and its time evolution is given as

i�
∂

∂t
ρI(t) = [ H ′

I(t) , ρI(t) ]. (2.26)

After some manipulations, the solution of Eq.(2.26) satisfies the following relation:

ρI(t) = U(t, t′)ρI(t′)U(t′, t) . (2.27)
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2.4.2 Quantum statistical average of observables

Let us consider the adiabatic switching on of perturbation as usual. Starting point is
the following Hamiltonian:

H = H0 +H ′e−δ|t|, (2.28)

where δ is an infinitesimal positive quantity. At very large times, both in the past
and in the future, the Hamiltonian is reduced to H0, which is assumed to be a soluble
problem. The density matrix operator is then

ρ(t = −∞) ≡ ρ0 ≡ e−βH0

Tre−βH0
. (2.29)

As t increases from −∞, interaction turned on, and state vector in the interaction
picture develops in time, all the way to the time t = 0, when the interaction is at full
strength, H ′. Then the expectation value of observable O(t) can be represented in

〈OH(t)〉 = Tr[ρ OH(t)] = Tr[ρI(0)OH(t)]

= Tr[U(0,−∞)ρI(−∞)U(−∞, 0)U(0, t)OI(t)U(t, 0)]

= Tr[ρ0U(−∞, t)OI(t)U(t,−∞)]

≡ 〈U(−∞, t)OI(t)U(t,−∞)〉0 . (2.30)

This is the general formula to calculate statistical average of observables.

2.5 Quantum Statistical Method for

Non-Equilibrium Systems
In this section, we review Keldysh method [38, 39]. In ultra-small systems such as
mesoscopic systems, even small external field easily drives such systems into highly
non-equilibrium states. Taking account of non-linear response of the system caused
by external field is also indispensable to reliable description of the non-equilibrium
system. In Keldysh method we can also utilize various exact relations which enable
us to treat the problem non-perturbatively.

2.5.1 Closed time contour (Keldysh contour)

The Gell-Mann and Low theorem states that this prescription generates the eigenstate
of H0 +H ′ that develops adiabatically from eigenstate of H0. Furthermore, since H
becomes H0 at t = ±∞ in this prescription, as far as the system remains equilibrium
state, the difference in state vectors at t = ±∞ is only the phase factor. Consequently
it is not necessary for us to pay the special care about the states at t = ±∞ when we
consider quantum statistical average of observables. However, if H ′ drives the system
to non equilibrium state, there is no guarantee for the validity of the Gell-Mann and
Low theorem. Breakdown of equilibrium may cause the essential difference between
state vectors at t = ±∞, so that we have to go back to the initial state that we only
know what it is like, whenever we consider quantum statistical average of observable.

Utilizing relation
U(t2, t1) = U(t2, t

′)U(t′, t1), (2.31)
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t∞ ∞-

Fig. 2.4 Keldysh contour

Eq.(2.30) should be treated as

〈OH(t)〉 = 〈U(−∞,∞)U(∞, t)OI(t)U(t,−∞)〉0. (2.32)

The operator U(−∞,∞) should be considered time evolution operator which go back
in time along different time contour C+ from the time contour C− for U(∞,−∞) as
shown in Fig.2.4, and is defined by

U(−∞,∞) = T̃ exp

[
i

�

∫ ∞

−∞
dt′H ′

I(t
′)
]
, (2.33)

where T̃ is the anti-chronological operator which set in order oppositely from how T
does. Therefore, Eq.(2.32) can be expressed as

〈OH(t)〉 =
〈
T̃ exp

[
− i

�

∫ −∞

∞
dt′H ′

I(t
′)
]
T

{
exp

[
− i

�

∫ ∞

−∞
dt′H ′

I(t
′)
]
OI(t)

}〉
0

≡
〈
TC

{
exp

[
− i

�

∫
C

dτH ′
I(τ)

]
OI(t)

}〉
0

, (2.34)

where C = C− +C+ and TC are the closed time contour as shown in Fig.2.4 and the
chronological operator along C, respectively.

2.5.2 The definition of Keldysh Green’s function

The Green’s function according to the time path in Fig.2.4 is defined by

G(k,k′; t, t′) ≡− i〈TC ckσH(t)c
†
k′σH(t

′)〉
=− i〈TCUCckσ(t)c

†
k′σ(t

′)〉0 (2.35)

called Keldysh Green’s function, where ckσH (ckσ) and c
†
k′σH (c†k′σ) are annihilation

and creation operators of electron in Heisenberg (interaction) picture. Furthermore
UC is time evolution operator along time contour C and is defined by

UC ≡ TC exp

[
− i

�

∫
C

dτH ′
I(τ)

]
. (2.36)

Keldysh Green’s function defined in Eq.(2.35) satisfies the Dyson equation given by

G(t, t′) = g(t, t′) +
∫
C

∫
C

dτ1dτ2g(t, τ1)
1

�
Σ(τ1, τ2)G(t2, t

′), (2.37)
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where the free electron Green’s function g is given by

g(k; t, t′) = −i〈TC ckσ(t)c†kσ(t′)〉0. (2.38)

Keldysh Green’s function consists of four components depending on which time branch
t and t′ belong to:

G(k,k′; t, t′) =

⎧⎪⎪⎨
⎪⎪⎩

G−−(k,k′; t, t′) t, t′ ∈ C−
G+−(k,k′; t, t′) t ∈ C+, t

′ ∈ C−
G−+(k,k′; t, t′) t ∈ C−, t′ ∈ C+

G++(k,k′; t, t′) t, t′ ∈ C+

. (2.39)

Expressions for these four Green’s function are as follows:

G−−(k,k′; t, t′) = −i〈T ckσH(t)c†k′σH(t
′)〉

= −iθ(t− t′)〈ckσH(t)c†k′σH(t
′)〉+ iθ(t′ − t)〈c†k′σH(t

′)ckσH(t)〉 ,
(2.40)

G+−(k,k′; t, t′) = −i〈ckσH(t)c†k′σH(t
′)〉 , (2.41)

G−+(k,k′; t, t′) = i〈c†k′σH(t
′)ckσH(t)〉 , (2.42)

G++(k,k′; t, t′) = −i〈T̃ ckσH(t)c†k′σH(t
′)〉

= −iθ(t′ − t)〈ckσH(t)c†k′σH(t
′)〉+ iθ(t− t′)〈c†k′σH(t

′)ckσH(t)〉 ,
(2.43)

G−− is also written as Gc (time-ordered Green’s function), G+− as G> (the greater
function), G−+ as G< (the lesser function), and G++ as Gc̄ (anti time-ordered Green’s
function). Thus Keldysh Green’s function and its self-energy can be expressed as 2×2
matrix in

Ǧ =

(
G−− G−+

G+− G++

)
, Σ̌ =

(
Σ−− Σ−+

Σ+− Σ++

)
. (2.44)

Such a matrix space is called the Keldysh space. The Fourier transformation is defined
as usual by

G(ω) =

∫ ∞

−∞
dω eiω(t−t′)G(t, t′), (2.45)

resulting in

Ǧ(ω) = ǧ(ω) + ǧ(ω)
1

�
Σ̌(ω) Ǧ(ω), (2.46)

Note that four components are not independent of each other (only three degree of
freedom), since there is a relation

G−− +G++ = G−+ +G+−. (2.47)

Therefore so-called Keldysh rotation is sometimes employed. Using unitary matrix

Ľ =
1√
2
(σ0 − iσ2) =

1√
2

(
1 −1
1 1

)
, (2.48)

we have the following expressions:

Ǧ = Ľσ̌3ǦĽ
† =

(
GR GK

0 GA

)
, (2.49)
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Σ̌ = ĽΣ̌σ̌3Ľ
† =

(
ΣR ΣK

0 ΣA

)
, (2.50)

where GR, GA and GK are called retarded, advanced and Keldysh (or kinetic) com-
ponents of Keldysh Green’s function. Definitions of these components are given as

GR(k,k′; t, t′) = −iθ(t− t′)〈[ckσH(t), c†k′σH(t
′)]+〉

= θ(t− t′){G+−(k,k′; t, t′)−G−+(k,k′; t, t′)} , (2.51)

GA(k,k′; t, t′) = iθ(t′ − t)〈[ckσH(t), c†k′σH(t
′)]+〉

= θ(t′ − t){G−+(k,k′; t, t′)−G+−(k,k; t, t′)} , (2.52)

GK(k,k′; t, t′) = −i〈[ckσH(t), c†k′σH(t
′)]−〉

= G+−(k,k′; t, t′) +G−+(k,k′; t, t′) , (2.53)

where [A,B]± = AB ±BA.
Finally let us summarize the various important relations between components of

Keldysh Green’s functions and self-energies:

GR = G−− −G−+ = G+− −G++ , (2.54)

GA = G−− −G+− = G−+ −G++ , (2.55)

GK = G−− +G++ = G−+ +G+− , (2.56)

ΣR = Σ−− +Σ−+ = −(Σ+− +Σ++) , (2.57)

ΣA = Σ−− +Σ+− = −(Σ−+ +Σ++) , (2.58)

ΣK = Σ−− +Σ++ = −(Σ−+ +Σ+−) , (2.59)

G−+ =(1 +GRΣR)g−+(1 + ΣAGA) +GRΣ−+GA , (2.60)

G+− =(1 +GRΣR)g+−(1 + ΣAGA) +GRΣ+−GA , (2.61)

GK =(1 +GRΣR)gK(1 + ΣAGK)−GRΣKGA . (2.62)

2.6 Full Counting Statistics

The counting statistics (CS) is originally one of the methods often adopted in the field
of optics and it means that counting up the number of target physical quantity in
limited time and watching the statistics with respect to the number. Recently the idea
of CS has been generalized and applied to the transport properties of the electrons
in ultra-small (mesoscopic) systems where the stationarity is not well guaranteed
due to large fluctuations [40]. If the counting-up can be made perfectly, we can, in
principle, deduce the probability distribution function with respect to number. With
this meaning, the method is called full counting statistics (FCS). Here we briefly
explain basics of FCS.

2.6.1 Overview of FCS

We consider the probability distribution function Pt0(N), where N is the number of
electrons transferred in a given time interval t0. In FCS scheme, the characteristic
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Fig. 2.5 The probability distribution as a function Number of electron N .

function (moment generating function) Zt0(χ) is defined as

Zt0(χ) =
∞∑

N=−∞
eiχNPt0(N) = eΩt0

(χ) , (2.63)

where χ is called counting field and Ωt0(χ) is the cumulant generating function (CGF)
with finite time interval. It is assumed that the time interval t0 is well larger than
relaxation time of the system. The k-th cumulant can be obtained from the k-th
derivative of CGF

Ck =
∂kΩt0(χ)

∂(iχ)k

∣∣∣∣
χ=0

= 〈〈Nk〉〉t0 . (2.64)

The first and second cumulants are, for example, given as

C1 =
∂Ωt0(χ)

∂(iχ)

∣∣∣∣
χ=0

= 〈N〉t0 , (2.65)

C2 =
∂2Ωt0(χ)

∂(iχ)2

∣∣∣∣
χ=0

= 〈N2〉t0 − 〈N〉2t0 , (2.66)

and are the mean and the variance of N , respectively. The third and forth cumulants
characterize the skewness and the sharpness of the probability distribution function,
respectively.

2.6.2 Introduction of counting field for double tunnel junction

Let us consider the double tunnel junction depicted in Fig.2.6. Grand canonical
Hamiltonian of the system is given as

K =
∑

ν=A,B,D

K(0)
ν +

∑
ν=A,B

H
(ν)
T = K0 +HT , (2.67)

where K
(0)
ν = H

(0)
ν − μνNν . The first three terms describe Hamiltonians of the

electrodes A, D, and B in the absence of tunneling and the second two terms describe
tunnelings between electrodes. Constructing theory for FCS, the first important step
is the introduction of counting field.

Let us first consider the measurement of change in NA caused by H
(A)
T . Measure-

ment protocol consists of the following steps:
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elect
rode
 A

elect
rode
 B

islan
d D

Fig. 2.6 Introduction of counting field χ for double tunnel junction.

(1) initial observation of NA and NB at time ti = −T0/2
State Vector : |ψtotal〉(i) = |ψA〉(i) ⊗ |ψD〉(i) ⊗ |ψB〉(i)
Density Matrix Operator : ρ

(i)
G = e−βK

(0)
A ⊗ e−βK

(0)
D ⊗ e−βK

(0)
B

[ Kν = Hν − μνNν (ν = A,D,B) ]

results ⇒ N
(i)
A and N

(i)
B

(2) time evolution T0
(3) final observation of NA and NB at time tf = T0/2

State Vector : |ψtotal〉(f) = |ψA〉(f) ⊗ |ψD〉(f) ⊗ |ψB〉(f)
Density Matrix Operator : unknown

results ⇒ N
(f)
A and N

(f)
B

A set of observation process stated above should be repeated again and again · · · .
After all observations we try to treat observation results statistically.

Let us formulate this protocol theoretically. Since particle number tunneling into

electrode A in time interval T0 = tf − ti is N
(f)
A −N

(i)
A (≡ ΔNA), probability for this

event is expressed as

Pfi(ΔNA) ∝ |(f)〈ψtotal|UA(T0)|ψtotal〉(i)|2δ(ΔNA − (N
(f)
A −N

(i)
A )) , (2.68)

where U (A)(T0) is the time evolution operator determined by tunnel Hamiltonian

H
(A)
T . Probability distribution function P (ΔNA) is then obtained as

P (ΔNA) =
∑
if

Pfi(ΔNA)
(i)〈ψtotal|ρ(i)G |ψtotal〉(i) . (2.69)

Noting that

δ
(
ΔNA − (N

(f)
A −N

(i)
A )

)
=

∫ ∞

−∞

dχA

2π
e−iχA(ΔNA−(N

(f)
A −N

(i)
A )) ,

we have

P (ΔNA) =

∫ ∞

−∞

dχA

2π
e−iχAΔNAZA(χA) , (2.70)
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where

ZA(χA;T0) = Tr

{
ρ
(i)
G exp

(
i

�
KA+(χA)T0

)
exp

(
− i

�
KA−(χA)T0

)}
, (2.71)

= Tr

{
ρ
(i)
G UA,+

(
χA;−T0

2
,
T0
2

)
· UA,−

(
χA;

T0
2
,−T0

2

)}
, (2.72)

≡ exp

{
ΩA(χA;T0)

}
, (2.73)

with

UA,∓

(
±T0

2
,∓T0

2

)
≡ TC∓ exp

{
− i

�

∫ ±T0/2

∓T0/2

dt H
(A)
T,∓(χA; t)

}
, (2.74)

KA,∓(χA) ≡ e±
i
2χANAKAe

∓ i
2χANA (2.75)

= K
(0)
A +H

(A)
T,∓(χA) . (2.76)

Here notations TC−(TC+) are nothing but T (T̃ ) in Sec.2.5.2. Deriving Eq.(2.71) from
Eq.(2.69), we generalized time evolution in the sprit of Keldysh method so that we
can apply the formalism to the non-equilibrium situation.

Now let us consider the measurement of change in NB caused by H
(B)
T . Although we

do not write the corresponding expressions in this case, it is obvious that the discussion
can be made exactly the same way for the change in NA. What is important is that we
should realize the changes in NA and NB are not independent, but ΔNB = −ΔNA as
far as the number conservation is retained. In other word, we should set the following
conditions with respect to counting fields as a necessary condition:

χB = −χA . (2.77)

Note that only Eq.(2.77) does not bring us the current of the system. In order to get
it we have to further impose the current continuity condition for the determination
of optimum chemical potentials of the central electrode D.

Finally let us summarize the prescription for introducing counting field for FCS:

STEP 1 Introducing time dependent counting field along Keldysh contour
defined by

χν(τ) ≡
{
χν(t−) = χν for τ = t− (τ on C−)
χν(t+) = −χν for τ = t+ (τ on C+)

, (2.78)

for

θ

(
t∓ ± T0

2

)
θ

(
−t∓ ± T0

2

)
, (2.79)

perform the following unitary transformation:

KC({χν(τ)}; τ) ≡ exp

⎛
⎝ i

2

∑
ν=A,B

χν(τ)Nν(τ)

⎞
⎠ ·K(τ)

× exp

⎛
⎝− i

2

∑
ν=A,B

χν(τ)Nν(τ)

⎞
⎠ (2.80)

=
∑

ν=A,B

[
K(0)

ν (τ) +H
(ν)
T (χν(τ); τ)

]
= K0(τ) +HT({χν(τ)}; τ) ,(2.81)
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STEP 2 Impose the boundary condition on counting fields:

χA(τ) = −χB(τ) , (2.82)

as necessary condition for current continuity. As a result, only one
counting field χ(τ) is introduced.

STEP 3 Cumulant generating function (CGF) of the system is then given as

Ω(χ) = lim
T0→∞

1

T0
log

〈
TC exp

{
− i

�

∫
C

dτ HT,C(χ(τ); τ)

} 〉
0,T0

, (2.83)

where 〈· · · 〉0,T0
denotes average with respect to K0 along Keldysh contour with

finite time interval [−T0/2, T0/2] and

HT,C(χ(τ); τ) ≡
{
HT,−(χ; t) for t = t− (τ on C−)
HT,+(χ; t) for t = t+ (τ on C+)

.

Note that

HT,+(χ; t) = HT,−(−χ; t) , (2.84)

and 〈 · · · 〉0,T0
�= 〈 · · · 〉0 as far as T0 is finite.
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Chapter 3

FULL COUNTING

STATISTICS IN DOUBLE

S/N/N C-SET

In this chapter, theory for full counting statistics (FCS) in two coupled capasitively
coupled single electron transistors (C-SETs) consisting of a common superconduc-
tor/nomal conducting island with gate electrode /normal conducting drain. Hereafter
we call it double S/N/N C-SET. This is the basic ultra-small solid state entangler
(SSE) and can be called the Cooper pair splitter (CPS) made of metallic tunnel junc-
tions. Based on the theory, we discuss currents and cross correlation of current noise
in superconducting subgap region.

3.1 Model and Hamiltonian

metalic islands

superconductor

normal metal normal metal

Fig. 3.1 Double S/N/N C-SET structures with external impedances.

Let us consider the double S/N/N C-SET as shown in Fig.3.1. This solid state
entangler (SSE) is equivalent to the Cooper pair splitter experimentally reported [7,
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9,11,12]. Hamiltonian of the system is given as

K = K0 +HT , (3.1)

where non-perturbative term K0 is Hamiltonian of electrodes and is described as

K0 = Kes +Hem , (3.2)

and perturbative term HT is tunnel Hamiltonian. Where the Hamiltonian of elec-
trodes Kes describing the common superconductor(c), normal metal electrodes(aα,
(α = L,R)), and normal metal islands(dα) are given by

Kes =
1

2

∑
kσ

Ψ̂
(c)†
kσ

[
ξ
(c)
k τ̂3 −Δτ̂+ −Δ∗τ̂−

]
Ψ̂

(c)
kσ

+
1

2

∑
α=L,R

∑
kσ

Ψ̂
(dα)†
kσ ξ

(dα)
k τ̂3Ψ̂

(dα)
kσ

+
1

2

∑
α=L,R

∑
kσ

Ψ̂
(aα)†
kσ ξ

(α)
k τ̂3Ψ̂

(aα)
kσ , (3.3)

where σ = (1,−1) or (↑, ↓), and Δ is the energy gap of superconducting electrodes.
We employ the symbolˆfor denoting matrices or spinors in Nambu-Gor′kov space. τ̂3
and τ̂± = 1/

√
2(τ̂1± iτ̂2) is the Pauli matrices and Nambu-Gorkov spinors are defined

as

Ψ̂
(c)
kσ =

(
ckσ
c†−k−σ

)
, Ψ̂

(dα)
kσ =

(
d
(α)
kσ

d
(α)†
−k,−σ

)
, Ψ̂

(aα)
kσ =

(
a
(α)
kσ

a
(α)†
−k,−σ

)
. (3.4)

Hem is the electromagnetic part of the Hamiltonian and describes electromagnetic
environment effect caused by environmental impedances. In the C-SET theory [5,

23, 28, 41–45], charges Q
(α)
i (See Fig.3.1) induced on the electrodes are all treated as

macroscopic quantum variables. Therefore, we introduce phase variables ϕ
(α)
i , which

satisfy the boson type commutation relations with charges,i.e.

[Q
(α)
i , ϕ

(α′)
i′ ] = i�δα,α′δi,i′ . (i, i′ = 1, 2, 3) (3.5)

In the absence of Ohmic resistance, Hem can be exactly treated and is shown to be
decoupled into two part (See Appendix A):

Hem = Henv +Hc , (3.6)

Henv =
∑
α

2∑
j=1

{
(ω

(α)
j /ω

(α)
L )2

2L
(α)
Σ

ϕ
′(α)2
j +

Q
′(α)2
j

2C(α)
−Q

′(α)
j V

′(α)
j

}
, (3.7)

Hc =
∑
α

(
q(α)

e
− n(α)

c

)2

U (α), (3.8)

where Henv and Hc describe environmental effect and charging effect in the island,

respectively. ω
(α)
j (j = 1, 2) is the electromagnetic mode of α C-SET, and q(α) is

charges of α island. Diagonalized variables satisfy

[Q
′(α)
i , ϕ

′(α′)
i′ ] = i�δα,α′δi,i′ , (i = 1, 2) (3.9)

[q(α), ϕ
′(α′)
i ] = i�δα,α′δi,3 . (3.10)
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Relations between original phases and diagonalized ones are given as

ϕ
(α)
i = ϕ

(α)
i,env + ϕ

(α)
i,c , (3.11)

where

ϕ
(α)
i,env =

∑
j=1,2

√
κ
(α)
i η

(α)
ij ϕ

′(α)
j , (3.12)

ϕ
(α)
i,c =

√
κ
(α)
i η

(α)
i3 ϕ

′(α)
3 , (3.13)

are charging and environmental phases, respectively, and κ
(α)
i = C

(α)
i /C

(α)
Σ (C

(α)
Σ =∑3

i=1C
(α)
i ), and η(α) is the matrix which transforms a set of original charges, their

canonical conjugate phases and electric potentials, (Q
(α)
i , ϕ

(α)
i , V

(α)
i ) into diagonalized

one, (Q
′(α)
i , ϕ

′(α)
i , V

′(α)
i ). Furthermore,

U (α) =
e2

2C
(α)
Σ

, (3.14)

n(α)
c = −

3∑
j=1

CjVj
e

+
eV

(α)
I

2U (α)
, (3.15)

are, respectively, charging energy of the island and charge offset of C-SET on the α

(=L, R) side. n
(α)
c , which contains chemical potential of α island, should be deter-

mined self-consistently by current continuity conditions. Note that perfect decoupling
of Hem into Henv and Hc tells us that we have to treat two kinds of charges, i.e. con-

tinuously changeable charges Q
′(α)
i (i = 1, 2) with ability to fluctuate and quantized

charge (island charge) q(α), when we discuss effects caused by electromagnetic energy
on the tunneling. In the C-SET theory electromagnetic environment and charging

effects are, respectively, described in terms of correlation functions of phases ϕ
′(α)
i′

(conjugate to Q
′(α)
i ) and ϕ

′(α)
3 (conjugate to q(α)). In the presence of Ohmic resis-

tance, although description of charging effect in terms of Hc remains unchanged, we
cannot treat electromagnetic environment effect due to ohmic dissipation by Hamil-
tonian scheme like Eq.(3.7). We will discuss on this treatment in the next section.

Quite naturally tunneling Hamiltonian HT is phase dependent and is expressed in
terms of Nambu-Gor′kov spinors as

HT =
∑
α

∑
kk′σ

[
Ψ̂

(c)†
kσ T̂

(α1)
kk′ Ψ̂

(dα1)
k′σ +Ψ̂

(aα)†
kσ T̂

(α2)
kk′ Ψ̂

(dα2)
k′σ

]
, (3.16)

where

Ψ̂
(dαi)
kσ =

(
d
(α)
kσ · e−i e

�
ϕ

(α)
i

d
(α)†
−k,−σ · ei e�ϕ

(α)
i

)
, (3.17)

T̂
(αi)
kk′ (t)=

(
T

(αi)
kk′ ei

e
�
[V

(α)
i −V

(α)
I ]t 0

0 −T (αi)∗
kk′ e−i e

�
[V

(α)
i −V

(α)
I ]t

)
. (3.18)

3.2 Description of Effect of Ohmic Resistance

In prior to the FCS formulation let us drop in at the discussion on how to describe
electromagnetic environment effect due to Ohmic resistance.
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For simplicity, let us consider the lowest order tunneling process. Since we de-
fined phase dependent creation and annihilation operators of island electrons (see
Eq.(3.17)), the correlation functions of phases appear Green’s functions for island
electrons. The Keldysh Green’s function defined by Nambu-Gor’kov spinor for island
electrons of α C-SET ǧdαi

is defined as

ǧdαi
(k; t, t′) ≡ −i

〈
TCΨ̂

(dαi)
kσ (t)Ψ̂

(dαi)†
kσ (t′)

〉
0

=

(
ǧdαi11(k; t, t

′) 0
0 ǧdαi22(k; t, t

′)

)
, (3.19)

where ǧdαi11(k; t, t
′) and ǧdαi22(k; t, t

′) are the diagonal components of Nambu-
Gor’kov space, which are also 2 × 2 matrix in Schwinger-Keldysh space and are
given as

ǧdαi11(k; t, t
′) =

〈
TCdkσα(t)d

†
kσα(t

′)
〉
0

〈
TCe

i e
�
[ϕ

(α)
i,env(t)+ϕ

(α)
i,c (t)]e−i e

�
[ϕ

(α)
i,env(t

′)+ϕ
(α)
i,c (t′)]

〉
0

=ǧdα11(k; t, t
′) F̌ (αi)

+−,env(t, t
′) F̌ (αi)

+−,c(t, t
′), (3.20)

ǧdαi22(k; t, t
′) =

〈
TCd

†
kσα(t)dkσα(t

′)
〉
0

〈
TCe

−i e
�
[ϕ

(α)
i,env(t)+ϕ

(α)
i,c (t)]ei

e
�
[ϕ

(α)
i,env(t

′)+ϕ
(α)
i,c (t′)]

〉
0

=ǧdα22(k; t, t
′) F̌ (αi)

−+,env(t, t
′) F̌ (αi)

−+,c(t, t
′), (3.21)

where F̌ (αi)
λλ′,env(t, t

′) and F̌ (αi)
λλ′,c(t, t

′) are correlation functions of phases which describe
the electromagnetic environment effect and the charging effect, respectively, and are
defined by

F̌ (αi)
λλ′,env(t− t′) ≡ −i〈 TCeiλ e

�
ϕ

(α)
i,env(t)eiλ

′ e
�
ϕ

(α)
i,env(t

′)〉0, (3.22)

F̌ (αi)
λλ′,c(t− t′) ≡ −i〈TCeiλ

e
�
ϕ

i,c(α)(t)eiλ
′ e
�
ϕ

(α)
i,c (t′)〉0 = F (αi)

λ−λ,c(t− t′)δλ′,−λ . (3.23)

(λ, λ′ = +or−) (3.24)

no ohmic resistance

Let us first calculate F̌ (αi)
λλ′,env(t− t′) in the absence of ohmic resistance. Introducing

b
(α)
j =

√
ω
(α)
j C(α)

2�
ϕ′(α) + i

1√
2�ω

(α)
j C(α)

(
Q′(α) −C(α)V

′(α)
j

)
, (3.25)

which satisfies [b
(α)
j , b

(α′)†
j′ ] = δjj′δαα′ , we first note that Eq.(3.7) is rewritten as

Henv =
∑
α

2∑
j=1

�ω
(α)
j

(
b
(α)†
j b

(α)
j +

1

2

)
. (3.26)

Making use of Campbell-Baker-Hausdorff formula

eA+B = eAeBe−[A,B]/2 = eBeAe[A,B]/2 , (3.27)
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with [A, [A,B]] = [B, [A,B]], we obtain

(
F (αi)−+

+−,env (t− t′)
F (αi)+−

+−,env (t− t′)

)
=

⎛
⎝ exp

(
J
(αi)−+
+− (t− t′)

)
exp

(
J
(αi)+−
+− (t− t′)

)
,

⎞
⎠ (3.28)

where(
J
(αi)−+
+− (t− t′)
J
(αi)+−
+− (t− t′)

)
=

∑
j

κ
(α)
i η

(α)2
ij E

(α)
c

�ω
(α)
j

×
[
coth

β�ω
(α)
j

2

(
cosω

(α)
j (t− t′)− 1

)±i sinω
(α)
j (t− t′)

]
,(3.29)

and charging energy of α C-SET is given by E
(α)
c = e2/2C(α).

effect of ohmic resistance

As is explained in Sec.2.2.2, one of the main effects of the electromagnetic environ-
mental impedance is to cause fluctuation in continuous charge. Charge fluctuation
in tunnel junction with environment inductance ZL(ω) = iωL can be also obtained
not only quantum mechanical treatment but phenomenological circuit theory. The
charge fluctuation discussed in Eq.(2.13), for example, can be obtained as

〈δQ2〉 = e2

2

�ωL

Ec

{ 1

exp(β�ωL)− 1
+

1

2

}

= 2

(
�C

e

)2 ∫ ∞

0

dω

ω

Re[Zt(ω)]

Rq
coth

(
1

2
β�ω

)
, (3.30)

with the following total impedance

Zt(ω) =
1

iωC + ZL(ω)−1
=

1

C

iω

ω2
L − (ω − iδ)2

. (3.31)

(δ → +0)

In this simplest case the two-body correlation of environmental phase takes a form

F+−
+−,env(t− t′) = eJ

+−(t−t′) , (3.32)

where

J+−
+− (t− t′) = κ2

Ec

�ωL

[
coth

(
1

2
β�ωL

)
(cosωL(t− t′)− 1)− i sinωL(t− t′)

]

=

∫ ∞

0

dω

ω

Re[Zt(ω)]

Rq

×
{
coth

(
β�ω

2

)
[cos(ω(t− t′))− 1]± i sin(ω(t− t′)

}
. (3.33)

Exactly the same physics appears in both quantities. The effect of ohmic resistance
cannot be treated in the Hamiltonian scheme. Furthermore, even Caldeira-Leggett
theory [46] only open the way to treat energy dissipation in quantum mechanics as far
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as physical systems stay in one-particle picture. Nevertheless result stated above en-
ables us to treat the problem phenomenologically [47] in the spirit of Cardeira-Leggett.
Therefore, in the case of double S/N/N C-SET, we evaluate the environmental phase
correlation as

(
J (αi)−+(t− t′)
J (αi)+−(t− t′)

)
=

∫ ∞

0

dω

ω

Re[Z
(α)
t (ω)]

Rq

×
{
coth

(
β�ω

2

)
[cos(ω(t− t′))− 1]± i sin(ω(t− t′))

}
,

(3.34)

with total impedance as shown in Fig.3.2

Z
(α)
t (ω) =

1

iωC
(α)
Σ + Z(α)−1(ω)

, (3.35)

where

Z(α)(ω) =
Z1(ω)

2
+ Z

(α)
2 (ω), (3.36)

Z1(ω) =iωL1 +R1, (3.37)

Z
(α)
2 (ω) =iωL

(α)
2 +R

(α)
2 . (3.38)

In order to understand physics due to ohmic resistance, it is instructive to express

Z
(α)
t (ω) in terms of quality factor Q(α) for α C-SET which characterize the energy

1

2
R

(α)
1

1

2
L

(α)
1

R
(α)
2

L
(α)
2

C
(α)
1

C
(α)
2

C
(α)
3

Fig. 3.2 Impedance of α C-SET of double S/N/N C-SET. Environmental in-
ductance iωL and ohmic resistance R are introduced in series and are coupled
to C-SET in parallel. Environmental impedance of superconductor is taken into
account equally in both C-SETs.
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dissipation in resonant oscillation and is defined by

Q(α) ≡ ω
(α)
R

ω
(α)
L

, (3.39)

ω
(α)
R ≡ 1(

R1

2 +R
(α)
2

)
· C(α)

Σ

. (3.40)

Total impedance is then expressed as

Z
(α)
t (ω) =

(
R1

2
+R

(α)
2

)
·

1 + i
[
Q(α)

]2 ω

ω
(α)
R

1 + i
ω

ω
(α)
R

−
[
Q(α)

]2 [
ω

ω
(α)
R

]2 . (3.41)

Q(α) → ′(∞) corresponds to large energy dissipation (no ohmic resistance) case.

3.3 Full Counting Statistics

3.3.1 Counting field and Hamiltonian for FCS

Following prescription stated in Sec.2.6.2, let us introduce counting field. In the case
double S/N/N C-SET, we have to pay special attention to the superconducting elec-
trode, since superconducting electrode is a common electrode for double C-SET and
the BCS Hamiltonian never conserves particle number. In order to introduce counting
fields in a relevant way, we introduce the following generalized unitary transformation:

K({χν(τ); τ}) ≡M({χν(τ)}; τ)† ·K(τ) ·M({χν(τ); τ}) (3.42)

where

M({χν(τ)}; τ) ≡ exp

{
i

2

[
χc(τ)Nc(τ) +

∑
α=L,R

∑
ν=dα,aα

χν(τ)Nν(τ)

]}
. (3.43)

Here we assigned notations c, dα, and aα to counting fields and the numbers of elec-
trons in superconducting, islands, and normal drain electrodes on α C-SET. Resulting
counting field dependent Hamiltonian takes then the form, for example on C− ;

K0(χc) =
1

2

∑
kσ

Ψ̂
(c)†
kσ

[
ξ
(c)
k τ̂3 − eiχc τ̂3Δτ̂+ − e−iχcτ̂3Δ∗τ̂−

]
Ψ̂

(c)
kσ

+
1

2

∑
α=L,R

∑
kσ

Ψ̂
(dα)†
kσ ξ

(dα)
k τ̂3Ψ̂

(dα)
kσ

+
1

2

∑
α=L,R

∑
kσ

Ψ̂
(aα)†
kσ ξ

(α)
k τ̂3Ψ̂

(aα)
kσ , (3.44)

and

HT({χ}) =
∑
α

∑
kk′σ

{
Ψ̂

(c)†
kσ T̂

(α1)
kk′ e

i
2 (χc−χdα )τ̂3Ψ̂

(dα1)
k′σ

+Ψ̂
(aα)†
kσ T̂

(α2)
kk′ e

i
2 (χaα−χdα )τ̂3Ψ̂

(dα2)
k′σ

}
. (3.45)
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Counting field χc appearing in off-diagonal terms of BCS Hamiltonian is irrelevant to
FCS, since these terms are not concerned with tunneling event. Furthermore, this has
no effect on statistical average which concerns superconducting state. Combinations
of counting fields χc−χdα

and χaα
−χdα

, on the other hand, are measures of changes
in electron numbers which caused by tunnelings from islands dα to electrodes c and
aα, respectively. Therefore, according to the discussion in Sec.2.6.2 it, it is plausible
to identify

χα ≡ χc − χdα
= −(χaα

− χdα
) , (3.46)

with the effective counting fields for the α C-SET. Finally the starting point of FCS for
the double S/N/N C-SET is given by the following counting field dependent tunneling
Hamiltonian

HT,C({χα(τ)}; τ) =
∑

α=L,R

∑
kk′σ

{
Ψ̂

(c)†
kσ (τ)T̂

(α1)
kk′ (τ)e

i
2χα(τ)τ̂3Ψ̂

(dα1)
k′σ (τ)

+Ψ̂
(aα)†
kσ (τ)T̂

(α2)
kk′ (τ)e−

i
2χα(τ)τ̂3Ψ̂

(dα2)
k′σ (τ)

}
,

(3.47)

where

χα(τ) ≡
{
χα(t−) = χα for τ = t− (τ on C−)
χα(t+) = −χα for τ = t+ (τ on C+)

, (3.48)

for

θ

(
t∓ ± T0

2

)
θ

(
−t∓ ± T0

2

)
. (3.49)

As is discussed in Sec.2.6.2, the counting field dependent time evolution operator
and characteristic function (moment generation function) are then defined in terms
of HT,C({χα(τ)}):

UC({χα};T0) ≡ TC exp

{
− i

�

∫
C

dt HT,C(χα(τ); τ)

}

≡ U+

(
{χα};−T0

2
,
T0
2

)
· U−

(
{χα}; T0

2
,−T0

2

)
, (3.50)

Z({χα};T0) ≡
〈
UC({χα};T0)

〉
0,T0

. (3.51)

3.3.2 Cumulant generating function

The cumulant generating function (CGF) Ω({χα}) for double S/N/N C-SET is defined
in long time average by

Ω({χα}) ≡ lim
T0→∞

1

T0
log

〈
TC exp

{
− i

�

∫
C

dτ HT,C({χα(τ)}, τ)
}〉

0,T0

. (3.52)

We ask the readers to refer to APPENDIX B for the derivation of CGF, we only
show here the explicit expression for CGF:

Ω ({χα}) = 1

2

∫ ∞

−∞

dω

2π
TrSK⊗NG

{
log

[
1̌− ǧc(ω)Σ̌c({χα}, ω)/�
1̌− ǧc(ω)Σ̌c(0;ω)/�

]

+
∑

α=L,R

log

[
1̌− ǧaα

(ω)Σ̌aα
(χα, ω)/�

1̌− ǧaα
(ω)Σ̌aα

(0;ω)/�

]}
, (3.53)
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where TrSK⊗NG denotes traces over both Schwinger-Keldysh and Nambu-Gor’kov
spaces. Here

Σ̌c({χα}, ω) =
∑
α

Ťcdα
(χα)ǧdα1

(ω)Ťdαc(χα)/� ,

Σ̌aα
(χα, ω) =Ťaαdα

(χα)ǧdα2
(ω)Ťdαaα

(χα)/� ,

(3.54)

are self-energies of corresponding Keldysh Green’s functions defined by Nambu spinors
as

ǦAB({χα}, ω) ≡
∑
k,k′

∫ ∞

−∞
dt eiω(t−t′)

(
− i〈 TCΨ̂(A)

kσ (t)Ψ̂
(B)†
k′σ (t′) 〉K({χα})

)

= ǧA(ω)δA,B + ǧA(ω)Σ̌A({χα}, ω)ǦAB({χα}, ω), (3.55)

for electrons in superconductor (A,B = c) and normal metallic islands (A,B = dα)
normal conducting drains (A,B = aα). Concerning tunnel matrix element, we omit-
ted the wave vector dependence, and redefined as counting field dependent tunnel
matrix element in Keldysh space ŤAB as

Ťcdα
(χα) ≡

(
T̂cdα

e
i
2χατ̂3 , 0

0, −T̂cdα
e−

i
2χατ̂3

)
, (3.56)

Ťaαdα
(χα) ≡

(
T̂aαdα

e−
i
2χατ̂3 , 0

0, −T̂aαdα
e

i
2χατ̂3

)
, (3.57)

with ŤAB(χα) = Ť ∗
BA(χα), where T̂νν′ = T̂ ∗

ν′ν is the 2×2 tunneling matrix of junction
between ν and ν′ electrodes which describes superconductor (ν = c), normal metallic
islands (ν = dα) and normal conducting drains (ν = aα). Note that ǦAB({χα}, ω) is
2× 2 matrix in Keldysh space:

ǦAB({χα}, ω) =
(
Ĝ−−

AB({χα}, ω) Ĝ−+
AB({χα}, ω)

Ĝ+−
AB({χα}, ω) Ĝ++

AB({χα}, ω)
)
, (3.58)

each component of which is 2× 2 matrix in Nambu space, say,

Ĝλλ′
AB({χα}, ω) =

(
Gλλ′

AB,11({χα}, ω) Gλλ′
AB,12({χα}, ω)

Gλλ′
AB,21({χα}, ω) Gλλ′

AB,22({χα}, ω),

)
, (3.59)

(λ, λ′ = − or +). In what follows, we denote GAB(0, ω) = GAB(ω).

3.4 Currents in Double S/N/N C-SET

The current is obtained by first derivative of CGF:

Iα = (−e) ∂Ω({χα})
∂(iχα)

∣∣∣∣
{χα}=0

= (−e)1
2

∫ ∞

−∞

dω

2π
TrSK⊗NG

[−Ǧcc({χα}, ω)(∂iχα
Σ̌c({χα}, ω))

− Ǧaαaα
({χα}, ω)(∂iχα

Σ̌aα
(χα, ω))

]|{χα}=0 , (3.60)
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where ∂iχα
≡ ∂/∂(iχα). Noting that

∂Σ̌c({χα}, ω)
∂(iχα)

= Ťcdα
(χα)

(
0 ĝ−+

dα1
(ω)

−ĝ+−
dα1

(ω) 0

)
τ̂3Ťdαc(χα), (3.61)

∂Σ̌aα
({χα}, ω)
∂(iχα)

= Ťaαdα
(χα)

(
0 −ĝ−+

dα2
(ω)

ĝ+−
dα2

(ω) 0

)
τ̂3Ťdαaα

(χα) . (3.62)

Eq.(3.60) becomes

Iα =(−e)1
2

∫ ∞

−∞

dω

2π
TrNG

[
− Ĝ−+

cc ({χα}, ω)
(
∂Σ̌c({χα}, ω)

∂(iχα)

)+−

− Ĝ+−
cc ({χα}, ω)

(
∂Σ̌c({χα}, ω)

∂(iχα)

)−+

− Ĝ−+
aαaα

({χα}, ω)
(
∂Σ̌aα

(χα, ω)

∂(iχα)

)+−

− Ĝ+−
aαaα

({χα}, ω)
(
∂Σ̌aα

(χα, ω)

∂(iχα)

)−+]∣∣∣∣
{χα}=0

. (3.63)

Furthermore, utilizing the following exact relation

G±∓
νν (ω) =

[
1 +

∑
α

GR
νdα

(ω)
1

�
Tdαν

]
ĝ±∓
ν (ω)

[
τ̂0 +

∑
α

1

�
Tνdα

GA
dαν(ω)

]

+GR
νν (ω)

(∑
α

1

�
Tνdα

g±∓
dαi (ω)

1

�
Tdαν

)
GA

νν(ω) , (3.64)

(ν, i) ≡ (c, 1) or (aα, 2)

and taking trace in Nambu space, we arrive at the final expression for the currents:

Iα =
e

2

∫ ∞

−∞

dω

2π
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�
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cc,11(ω)

∣∣2 (
g+−
dα1,11
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+
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dα1,11
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(ω)
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−
∣∣∣1
�
Taαdα

∣∣∣2∣∣∣ 1 + Tdαaα
GR

cd̃α,11
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∣∣∣2
×
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(ω)g−+
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aα,11(ω)
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. (3.65)

This formula describes all kinds of currents in double S/N/N C-SET due to quasi-
particle, branch crossing, elastic co-tunneling(EC), crossed Andreev reflection (cAR),
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and direct Andreev reflection(dAR), if the current continuity condition is satisfied.
In this case, the condition can be stated that the last term of Eq.(4.3) coincides
with the rest terms of Eq.(4.3), which is nothing but the determination of optimum
electric potential of the island of α C-SET. We are interested in the current which
conveys quantum entanglement, we restrict ourselves to I − V characteristics in the

superconducting subgap region, i.e. in terms of electric potential of α island V
(α)
I

self-consistently determined by current continuity condition

e(V
(α)
I − V1) < Δ , (3.66)

where currents due to EC, cAR and dAR survive.

IL(EC) IR(EC)

(a) Elastic co-tunneling

IL(dAR)

(b) Direct Andreev reflection

IL(cAR) IR(cAR)

(c) Crossed Andreev reflection

Fig. 3.3 Schematic diagrams for the tunneling mechanisms expected in super-
conducting subgap region.
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3.5 Cross Correlation of Current Noise in Double

S/N/N C-SET

Cross correlation of current noise is defined as

SLR(ω) ≡
∫ ∞

−∞
d(t− t′) eiω(t−t′)〈[δIL(t), δIR(t′)]+〉, (3.67)

where Iα(t) and
δIα(t) = Iα(t)− 〈Iα(t)〉 , (3.68)

are, respectively, the current and current noise operators in α C-SET, and [A,B]+ ≡
AB + BA is the anti-commutation relation. Total cross correlation of current noise
is obtained as the second derivative of CGF:

SLR(ω = 0) =(−e)2 ∂2Ω({χR})
∂(iχα)∂(iχL)

|{χα}=0

=− e2

2�

∫ ∞

−∞

dω

2π

× TrSK⊗NG

{
Ǧcc({χα}, ω)∂Σ̌c({χα}, ω)

∂(iχL)
Ǧcc({χα}, ω)∂Σ̌c({χα}, ω)

∂(iχR)

}
.

(3.69)

This formula describes the cross correlation of current noise in double S/N/N C-SET
as far as current continuity condition is taken into account. Using Eq.(3.54), setting
the counting field to zero and taking trace in Schwinger-Keldysh space, we arrive at

SLR(0) =
e2

�4
|TcdL

|2|TcdR
|2

∑
σ
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−∞
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4π

× TrNG
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cc (ω)τ̂3ĝ
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(ω)− Ĝ+−
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dR1

(ω)
)

− 1

2
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cc(ω)

)
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dL1
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(
ĜR

cc(ω)− ĜK
cc(ω)

)
τ̂3ĝ

+−
dR1

(ω)

+
(
ĜR

cc(ω)− ĜK
cc(ω)

)
τ̂3ĝ

+−
dL1

(ω)ĜA
cc(ω)τ̂3ĝ

−+
dR1

(ω)

+ ĜA
cc(ω)τ̂3ĝ
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dL1

(ω)
(
ĜR

cc(ω) + ĜK
cc(ω)

)
τ̂3ĝ

−+
diR1

(ω)
]]
. (3.70)

Although the formula Eq.(3.69) and Eq.(3.70) are general, we are interested in the
cross correlation of current noise, so that, paying attention on this point and taking
trace in Nambu-Gor’kov space, we finally obtain the explicit expression for the cross
correlation in superconducting subgap region:
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SLR(0) =
(−e)2
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−
(
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(ω)− g−+
dL1,11

(ω)g+−
dR1,22

(ω)

− g+−
dL1,22

(ω)g−+
dR1,11

(ω) + g−+
dL1,22

(ω)g+−
dR1,11

(ω)
)

×
∑
α

∣∣∣ 1

�
Tcdα

∣∣∣4(g+−
dα1,11

(ω)g−+
dα122

(ω)− g−+
dα1,11
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. (3.71)

The formula obtained describes non-perturbatively the current noise cross correlation
in the double S/N/N C-SET in that the tunneling processes is taken into account up
to infinite order.

3.6 Numerical Results

In what follows, for simplicity, we assume the same circuit parameters for left and right

C-SETs, i.e., C
(α)
i = Ci ≡ C0 (i = 1, 2), C

(α)
3 ≡ C

(α)
g = C0/2 and L

(α)
1 = L

(α)
2 = L,

resulting in E
(α)
c = Ec = e2/C0, U

(α) = U = Ec/5 and ω
(α)
j /ω

(α)
L = ωj/ωL.

First we consider the case QL = QR = 1000 (small Ohmic resistance case). In
Fig.3.4 (a)currents, (b)current components and (c)corresponding cross correlations of

current noise in subgap region are shown for V
(R)
2 = 0.0, 0.2 · (Δ/e) and 0.5 · (Δ/e)
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from top to bottom. Choosing Δ/(2U) = 10 and keeping V
(α)
3 = 0, V

(L)
2 is changed

in the subgap region at temperature T = 0.2U/kB and R
(α)
T /Rq = 100 (tunneling

limit). With this parameter choice, there are three kinds of currents, I
(cAR)
α , I

(dAR)
α ,

and I
(EC)
α in subgap region, but note that the contribution to SLR(ω = 0) comes

from I
(cAR)
α and I

(EC)
α , yielding bunching and anti-bunching correlations, respectively.

Since I
(cAR)
α (I

(EC)
α ) becomes zero at V

(+)
I ≡ V

(L)
I +V

(R)
I = 0 (V

(−)
I ≡ V

(L)
I −V (R)

I = 0)

in the absence of charging energy, Coulomb gap for I
(cAR)
α (I

(EC)
α ) opens in the region

|V (+)
I | < 2U/e (|V (−)

I | < 2U/e). Note that chemical potential of island in α C-SET,

V
(α)
I can be obtained self-consistently by imposing the current continuity condition

of the double S/N/N C-SET and is increasing function of V
(α)
2 .
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Fig. 3.4 For double S/N/N C-SET with Q(α) = 1000, V1 = 0, and V
(α)
3 = 0,

currents Iα, current components due to direct (crossed) Andreev reflection I
(dAR)
α

(I
(cAR)
α ), the elastic co-tunneling I

(EC)
α flowing through α (=L, R) C-SET and

corresponding current noise cross correlation SLR(0) are shown as a function of

bias voltage V
(L)
2 with V

(R)
2 = 0 (top), V

(R)
2 = 0.2 · Δ/e (middle), and V

(R)
2 =

0.5 ·Δ/e (bottom). Temperature is tentatively chosen as T = 0.2U/kB.
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In the case V
(R)
2 = 0.0, SLR(ω = 0) is positive definite, i.e., the bunching correla-

tion in whole subgap region since |I(cAR)
α | is always larger than |I(EC)

α | for non-zero

V
(L)
I , and both currents are zero at V

(L)
2 = 0. Therefore SLR(ω = 0) in this case is

symmetric function with respect to V
(L)
2 = 0 axis in subgap region.

In the case V
(R)
2 = 0.2·Δ/e, on the other hand, Coulomb gap regions for I

(cAR)
α and

I
(EC)
α do not coincide. Because of that SLR(ω = 0) becomes negative (typical noise

correlation for particles which obey Fermi-Dirac statistics) in a narrow window of V
(L)
2

with center at around V
(+)
I = 0 where I

(cAR)
α = 0 while I

(EC)
α is non-zero (bunching-

antibunching crossover), and becomes asymmetric with respect to V
(L)
2 = 0 axis. For

this value of V
(R)
2 , however, I

(cAR)
α rapidly becomes more dominant than I

(EC)
α as V

(L)
2

increases beyond Coulomb gap region of I
(cAR)
α . As a result, SLR(ω = 0) becomes

positive again (Restoration of bunching correlation). Therefore, we can expect the

bunching correlation of current noise over a wide range of V
(L)
2 even in this case.

Furthermore, in the case V
(R)
2 = 0.5 ·Δ/e, although the situation is similar to the

case V
(R)
2 = 0.2·Δ/e in that Coulomb gap regions for I

(cAR)
α and I

(EC)
α do not coincide,

distance between two Coulomb gap regions along V
(L)
2 = 0 axis becomes much larger.

Because of that, I
(cAR)
α becomes less dominant than I

(EC)
α in superconductor subgap

region (V
(L)
2 > Δ/e) beyond Coulomb gap region of I

(cAR)
α . As a result, SLR(ω = 0)

never becomes positive (bunching-antibunching crossover and luck of restoration of
bunching).

In Fig.3.5 cross correlation of current noise SLR(0) are shown for Q(α) = 1000
(low Ohmic resistance) and Q(α) = 0.034 (high ohmic resistance). Results show that
bunching-antibunching region becomes wider partly because Coulomb gap regions

for I
(cAR)
α becomes larger and partly because de-coherence due to Ohmic dissipation

makes I
(cAR)
α which conveys quantum entangled information smaller in principle.
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Fig. 3.5 Cross correlation of current noise: SLR(0) for Q = 1000 (left) and

SLR(0) for Q(α) = 0.034 (right)
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Chapter 4

CONTROL OF CROSS

CORRELATION BY

MAGNETIC ORDER

4.1 Ferromagnetic Island: Double S/F/N C-SET

4.1.1 Model and Hamiltonian

In the preceding chapter we have discussed current and cross correlation of current
noise of the double S/N/N C-SET in the superconducting subgap region and have
shown that the crossed Andreev current conveys non-local spin entangled information
and causes the bunching correlation. In this situation, however, current due to elastic
co-tunneling also exists and causes the antibunching correlation peculiar to fermion
flow.

Let us consider here a kind of filter for the local spin entangled information. One
of the candidates is the SSE whose structure is the same structure as S/N/N C-SET
but with nonmagnetic islands replaced by ferromagnetic islands (Fig.4.1). In what
follows we call this SSE as double S/F/N C-SET.

Hamiltonian of the double S/F/N C-SET is given as

Kes =
1

2

∑
kσ

Ψ̂
(c)†
kσ

{
ξ
(c)
k τ̂3 − σ

2

[
Δτ̂+ −Δ∗τ̂−

]}
Ψ̂

(c)
k′σ +

1

2

∑
α

∑
kσ

Ψ̂
(aα)†
kσ ξ

(aα)
k τ̂3 Ψ̂

(aα)
k′σ

+
1

2

∑
α

∑
kσ

Ψ̂
(dα)†
kσ

(
ξ
(dα)
k − γασ

Δ
(α)
ex

2

)
τ̂3 Ψ̂

(dα)
k′σ ,

(4.1)

where Δ
(α)
ex is the exchange splitting energy of α ferromagnetic island and γα denotes

the spin alignment of α ferromagnetic island. γα = +1 (γα = −1) corresponds to
majority spin in α island is up (down).

4.1.2 Effect of magnetic ordering

In the presence of ferromagnetic ordering the density of states at the Fermi energy
is not equal for the spin orientations. Since tunneling process never change the spin
orientation as far as magnetic impurities are absent, tunneling probability is strongly
affected depending on whether the tunneling electron has majority spin or minority
spin.
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Fig. 4.1 The structure of double S/F/N C-SET with external circuit. Metallic
islands are assumed ferromagnetic. Magnetic ordering serves a kind of filter for
non-local spin entangled information.

The lesser and greater functions for the electrons in the ferromagnetic island of α
C-SET are given in Nambu-Gor’kov space as follows:

g+−
dαi

(ω) = −iπ�

∫ ∞

−∞

dω′

2π
(1− nF(ε− ε′))

×
{
Ndα

(0)(1 + γασPα)F (αi)+−
+− (ω′) 0

0 Ndα
(0)(1 − γασPα)F (αi)+−

−+ (ω′)

}
,

g−+
dαi

(ω) = iπ�

∫ ∞

−∞

dω′

2π
nF(ε− ε′)

×
{
Ndα

(0)(1 + γασPα)F (αi)−+
+− (ω′) 0

0 Ndα
(0)(1 − γασPα)F (αi)−+

−+ (ω′)

}
.

(4.2)

Here ε = �ω, and nF(ε) = [exp(βε) + 1]−1 and Ndα
(0) are, respectively, Fermi distri-

bution function and the density of states at Fermi energy for the metal of α island

in nonmagnetic state. F (αi)
λλ′ (ω) = F (αi)

λλ′,env(ω)F (αi)
λλ′,c(ω) is the product of correlation

functions of environmental and charging phases. Pα denotes the spin polarization rate,
and how to enlarge it is one of the most interested problems in application-oriented
research fields such as spintronics.
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4.2 Current and Cross Correlation of Current

Noise

The current flowing through the double S/F/N C-SET in subgap region (e(V
(α)
I −

V1) < Δ) is obtained as

Iα =
e

2

∫ ∞

−∞

dω

2π

[∣∣∣1
�
Tcdα

∣∣∣2
×

{∣∣∣1
�
Tcdᾱ

∣∣∣2 ∣∣GR
cc,11(ω)

∣∣2 (
g+−
dα1,11

(ω)g−+
dᾱ1,11

(ω)− g−+
dα1,11

(ω)g+−
dᾱ1,11

(ω)
)

+
∑

α′=L,R

∣∣∣1
�
Tcdα

∣∣∣2 ∣∣GR
cc,12(ω)

∣∣2 (
g+−
dα1,11

(ω)g−+
dα′1,22

(ω)− g−+
dα1,11

(ω)g+−
dα′1,22

(ω)
)}

−
∣∣∣1
�
Taαdα

∣∣∣2∣∣∣ 1 + Tdαaα
GR

cdα,11(ω)
∣∣∣2

×
(
g+−
dα2,11

(ω)g−+
aα ,11(ω)− g−+

dα2,11
(ω)g+−

aα,11(ω)
)]
, (4.3)

together with current continuity condition. This current includes currents only due
to EC, cAR, dAR.

The product of the lesser and greater Green’s functions in the same island is given
by

g+−
dα1,11

(ω)g−+
dα1,22

(ω) ∝ Ndα
(0)Ndα

(0)(1 + σPα)(1− σPα). (4.4)

This term describes the current due to dAR, I
(dAR)
α and is suppressed in ferromagnetic

island. In the limit of half metal, in which all the electrons have the same spin

polarization (Pα = 1), I
(dAR)
α disappears irrespective of spin align configuration of

ferromagnetic islands. Therefore, in subgap region only currents due to EC and cAR

processes, I
(EC)
α and I

(cAR)
α exist. In what follows we restrict ourselves to half metal

islands only.

4.2.1 Parallel configuration

Let us consider the parallel configuration. In this case the majority spins of both
ferromagnetic islands are the same; if γL = γR = +1, both majority spins are up.
For the current due to cAR reflection, the product of the lesser and greater Green’s
functions becomes

g+−
dL1,11

(ω)g−+
dR1,22

(ω) ∝ NdL
(0)NdR

(0)(1 + σPL)(1− σPR) , (4.5)

which vanishes in half metal limit (PL = PR = 1). Therefore the current in parallel
alignment, Iα,‖ for half metal islands originates from EC only, and is given as
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Iα,‖ =4π2e

∫ ∞

−∞

dω

2π

∫ ∞

−∞

dω1

2π

×
[∫ ∞

−∞

dω2

2π
4
∣∣∣ 1
�
TcdL

∣∣∣2∣∣∣1
�
TcdR

∣∣∣2 ∣∣GR
cc,11(ω)

∣∣2NdL
(0)NdR

(0)

×
{
F (L1)+−

+− (�ω1)
[
1− nF

(
�(ω − ω1) + e(V

(L)

1 − V
(L)

I )
)]

×F (R1)−+
+− (�ω2)nF

(
�(ω − ω2) + e(V

(R)

1 − V
(R)

I )
)

−F (L1)−+
+− (�ω1)nF

(
�(ω − ω1) + e(V

(L)

1 − V
(L)

I )
)

×F (R1)+−
+− (�ω2)

[
1− nF

(
�(ω − ω2) + e(V

(R)

1 − V
(R)

I )
)]}

− 2
∣∣∣1
�
Tα2

∣∣∣2∣∣∣ 1 + Tα∗2GR
cdα ,11(ω)

∣∣∣2Ndα
(0)Naα

(0)

×F (L2)+−
+− (�ω1)

[
1− nF

(
�(ω − ω1) + e(V

(α)
2 − V

(α)
I )

)]
nF(�ω)

−F (L2)−+
+− (�ω1)nF

(
�(ω − ω1) + e(V

(α)
2 − V

(α)
I )

)[
1− nF(�ω)
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. (4.6)

Because of the similar reason, there are also vanishing terms in cross correlation of
current noise in subgap region (Eq.(3.71)). Therefore, in the case of parallel alignment
for half metal islands, cross correlation of current noise is given as

SLR,‖(0) =
(−e)2
2
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TcdL
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+ |GR
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dR1,22

(ω)
)}]

,

(4.7)

under current continuity condition.

4.2.2 Anti-parallel configuration

Next let us consider the anti-parallel configuration. In this case the majority spins of
both ferromagnetic islands are opposite; if γL = +1 and γR = −1, majority spins of
electrons in left and right islands are, respectively up and down.

For the current due to EC, the product of the lesser and greater Green’s functions
of electron becomes

g+−
dL1,11

(ω)g−+
dR1,11

(ω) ∝ NdL
(0)NdR

(0)(1 + σPL)(1 − σPR) . (4.8)

Therefore, in this configuration, the current due to EC vanishes in half metal limit.
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The current in anti-parallel alignment, Iα,⊥ for half metal islands is given as

Iα,⊥ =2π2e

∫ ∞

−∞

dω

2π

∫ ∞

−∞

dω1

2π

×
[∫ ∞

−∞

dω2

2π
4
∣∣∣1
�
TcdL

∣∣∣2∣∣∣1
�
TcdR

∣∣∣2 ∣∣GR
cc,12(ω)

∣∣2NdL
(0)NdR

(0)

×
{
F (L1)+−

+− (�ω1)
[
1− nF

(
�(ω − ω1) + e(V

(L)

1 − V
(L)

I )
)]

×F (R1)−+
−+ (�ω2)nF

(
�(ω − ω2)− e(V

(R)

1 − V
(R)

I )
)

−F (L1)−+
+− (�ω1)nF

(
�(ω − ω1) + e(V

(L)

1 − V
(L)

I )
)

×F (R1)+−
−+ (�ω2)

[
1− nF

(
�(ω − ω2)− e(V

(R)

1 − V
(R)

I )
)]}

− 2
∣∣∣ 1
�
Tα2

∣∣∣2∣∣∣ 1 + Tα∗2GR
cdα,11(ω)

∣∣∣2Ndα
(0)Naα

(0)

×F (L2)+−
+− (�ω1)

[
1− nF

(
�(ω − ω1) + e(V

(α)
2 − V

(α)
I )

)]
nF(�ω)

−F (L2)−+
+− (�ω1)nF

(
�(ω − ω1) + e(V

(α)
2 − V

(α)
I )

)[
1− nF(�ω)

]]
. (4.9)

The current in Eq.(4.9) contains only cAR process between superconductor/half-
metal-islands interface, so we can extract the cAR current which includes quantum
entanglement information. Therefore the introduction of ferromagnetic islands en-
ables us to extract and control the quantum entanglement.

The cross correlation of current noise in subgap region (Eq.(3.71)) in anti-parallel
alignment for half metal islands is obtained as

SLR,⊥(0) =
(−e)2
2

∣∣∣ 1

�
TcdL

∣∣∣2∣∣∣ 1

�
TcdR

∣∣∣2 ∫ ∞

−∞

dω

2π

[
1

2

(
|GR

cc,12(ω)|2 + |GR
cc,21(ω)|2

)
×

(
g+−
dL1,11

(ω)g−+
dR1,22

(ω) + g−+
dL1,11

(ω)g+−
dR1,22

(ω)

+ g+−
dL1,22

(ω)g−+
dR1,11

(ω) + g−+
dL1,22

(ω)g+−
dR1,11

(ω)
)

−
∣∣∣ 1

�
TcdL

∣∣∣2∣∣∣ 1

�
TcdR

∣∣∣2(|GR
cc,12(ω)|4 + |GR

cc,21(ω)|4
)

×
{(
g+−
dL1,11

(ω)g−+
dL1,22

(ω)− g−+
dL1,11

(ω)g+−
dL1,22

(ω)
)

× (
g+−
dR1,22

(ω)g−+
dR1,11

(ω)− g−+
dR1,22

(ω)g+−
dR1,11

(ω)
)

+
(
g+−
dL1,11

(ω)g−+
dR1,22

(ω)− g−+
dL1,11

(ω)g+−
dR1,22

(ω)
)

× (
g+−
dR1,11

(ω)g−+
dL1,22

(ω)− g−+
dR1,11

(ω)g+−
dL1,22

(ω)
)}]

.

(4.10)

Fig.4.2 shows Feynman diagrams of crossed Andreev reflection processes. In half
metal limit, process (b) is forbidden because both electrons of up and down spins are
required in the one island.
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(a) (b)

(c) (d)

Fig. 4.2 Feynman diagrams describing transport of crossed Andreev reflection
in anti-parallel configuration, where solid lines of orange (magenta) are the lowest
Green’s functions of island electrons (superconductor electrons) and blue wavy
lines are correlation functions of phases. Process (b) is a forbidden one in half
metal limit.

Although the anti-parallel configuration of island spins is promising to purely
extracts quantum entanglement information, the bunching signal becomes a little
smaller since some class of higher order of tunneling processes are quenched.
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Chapter 5

SUMMARY

We proposed the non-perturbative theory for full counting statistics (FCS) in solid
state entangler (SSE) based on Nambu-Gor’kov and Schwinger-Keldysh field theoret-
ical non-equilibrium method. Based on the theory we studied the currents and cross
correlation of the current noise of SSE to get the further understanding of physics of
quantum entanglement. The theory can be applicable to the transport properties in
the region where Coulomb blockade and Andreev reflection coexist, since tunneling
processes are taken into account non-perturbatively in the presence of arbitrarily large
charging effect as well as electromagnetic environment effect. Concerning the latter,
we treated SSE with ohmic resistance phenomenologically in the spirit of Cardeira-
Leggett theory.

We considered double S/N/N C-SET as SSE, the structure of which consists of a
common superconducting electrode/normalconducting left and right ultra-small cen-
tral electrodes (islands)/normalconducting left and right drains. Each of islands is
capacitively coupled with gate electrodes to control tunneling. Since we were inter-
ested in extracting and controlling quantum entanglement information by the charging
effect, we studied SSE with U < Δ (U : charging energy, Δ: energy gap of supercon-
ductor) so that sufficiently wide superconducting subgap region can be expected.

We derived explicit expression for cumulant generation function (CGF) for the
double S/N/N C-SET. Explicit expressions for the currents and cross correlation
of current noise were then obtained as the first and second derivatives (cumulants)
with respect to the relevant counting fields, respectively. It was shown that, in the
subgap region there exist three kinds of currents due to the direct Andreev reflection
(dAR), crossed Andreev reflection (cAR) and elastic co-tunneling (EC) and each of
the currents exhibit Coulomb blockade related phenomena (Coulomb gaps, Coulomb
staircases and Coulomb oscillations) due to the charging effect. Since contribution to
the cross correlation of current noise SLR(0) comes from currents due to cAR and EC
in subgap region, the correlation is strongly influenced by the charging effect.

We showed that SLR(0) is always positive (bunching correlation) in the subgap
region if two C-SETs are biased symmetrically. The cross correlation for the flow
of Fermi particles is antibunching because of Fermi-Dirac statistics. Therefore, it
is the direct consequence of the fermion flow with quantum entanglement. It was
also shown that SLR(0) exhibit bunching-antibunching crossover followed by restora-
tion of bunching correlation as bias voltage increases and SLR(0) shows bunching-
antibunching crossover only and never shows the restoration of bunching correlation
for further large asymmetric bias condition.

Effect of ohmic resistance on SLR(0) was studied. The ohmic dissipation strongly
influences on SLR(0), partly because of increase in Coulomb Gap of cAR current, and
partly because of decrease in magnitude of cAR current.
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We proposed double S/F/N C-SET, structure of which is the double S/N/N C-SET
but with ferromagnetic islands instead of nonmagnetic ones as one of the methods
for extraction and control of quantum entanglement information. It was shown that
if the half metal ferromagnetic islands are employed, only cAR current (EC current)
contributes to SLR(0); i.e., perfect extraction of bunching and antibunching correla-
tion.

Theoretical results obtained in this study were all made for the first time in this field,
and the results will lead us to the new stage of the study on bunching-antibunching
nature of current noise cross correlation in the presence of quantum entanglement.
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Appendix A

C-SET Theory

A.1 Describing electromagnetic environment effect

and charging effect in C-SET

Basic structure to investigate Coulomb blockade is C-SET. d In the microscopic C-
SET theory [5, 41–45, 48] charges induced on the electrodes are all treated as quan-
tum mechanical macroscopic variables. First thing to do is to find phases which are
canonical conjugate to the charges. It can be made based on quantum mechanics with
constraint by Dirac [49]. In this case, the constraint condition is that the charge of
island

q ≡ −
3∑

i=1

Qi, (A.1)

is constant in time in the absence of tunneling:

3∑
i=1

Q̇i = 0. (A.2)

Lagrangian of the electromagnetic energy Lem for C-SET structure is given by

Lem =
2∑

i=1

{Li

2
Q̇2

i −
Q2

i

2Ci
+Qi(Vi − Vc)

}
− Q2

3

2C3
+Q3(V3 − Vc) + λ

3∑
i=1

Q̇i.(A.3)

The canonically conjugate phase variables are determined by

ϕi =
∂Lem

∂Q̇i

= LiQ̇i + λ (i = 1, 2), (A.4)

ϕ3 =
∂Lem

∂Q̇3

= λ, (A.5)

π =
∂Lem

∂λ̇
= 0. (A.6)

Therefore resulting Hamiltonian is form of

Hem =
3∑

i=1

ϕiQ̇i + πλ̇− Lem

=

2∑
i=1

{ 1

2Li
(ϕi − λ)2 +

Q2
i

2Ci
−Qi(Vi − Vc)

}
+

Q2
3

2C3
−Q3(V3 − Vc). (A.7)
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Fig. A.1 The ultra-small double junction with island tuned by gate voltage (C-

SET). R
(j)
T and Cj are tunnel resistance and capacitance of the junction j(j =

1, 2). μi is chemical potential of the electrode i ( left electrode i = 1, right
electrode i = 2, gate electrode i = 3, island i = c), Qi is the charge of the
electrode i and Vi is the voltage expressed as Vi − Vc = −(μi − μc)/e of the
electrode i.

Defining χ1 ≡ λ− ϕ3 = 0 and χ2 ≡ π = 0, Hamiltonian is enable to be rewritten as

H′
em ≡ Hem +

2∑
i=1

αiχi. (A.8)

Noting that [χ1, χ2] = i�, the equation of motion for χ1 is given by

i�χ̇1 = [χ1,H′
em] = [χ1,Hem] + α2[χ1, χ2]

= i�

[
Q3

C3
− (V3 − Vc) + α2

]
= 0, (A.9)

therefore α2 is given by

α2 = −
[
Q3

C3
− (V3 − Vc)

]
. (A.10)

Similarly the equation of motion for χ2 is given by

i�χ̇2 = i�

[
2∑

i=1

ϕi − λ

Li
− α1

]
= 0, (A.11)

and α1 is obtained by

α1 =

2∑
i=1

ϕi − λ

Li
. (A.12)
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Using Eq.(A.10), Eq.(A.12), λ = ϕ3 + χ1, χi and π = 0, we finally have

H′
em =

2∑
i=1

(ϕi − ϕ3)
2

2Li
+

3∑
i=1

{
Q2

i

2Ci
−Qi(Vi − Vc)

}
. (A.13)

Qi and ϕi can be quantized as

[Qi, ϕj ] = i�δi,j , [Qi, Qj ] = [ϕi, ϕj ] = 0. (A.14)

H′
em can be diagonalized by the canonical transformation from (ϕi, Qi) to (ϕ′

i, Q
′
i)

and is obtained by
Hem = Henv +Hc , (A.15)

where

Henv =
2∑

j=1

{(ωj/ωL)
2

2LΣ
ϕ′2
j +

Q′2
j

2C
−Q′

j(V
′
j − V ′

c )
}
, (A.16)

Hc =
(q
e
− nc

)2

U, (A.17)

U ≡ e2

2CΣ
, (A.18)

nc ≡ −
3∑

j=1

CjVj
e

+
eVc
2U

, (A.19)

where Henv and Hc are Hamiltonian of environment effect coupled to external circuit
and charging energy of island. Furthermore, U and nc are, respectively, charging
energy in the island and charge off-set of C-SET. Note that nc includes the chemical
potential of the island and self-consistently determined by imposing current continuity
condition. Here LΣ ≡ L1 + L2, C ≡ C1C2/(C1 + C2), CΣ ≡ C1 + C2 + C3, and ωL ≡
1/
√
LΣC. Two kinds of non-zero eigenmodes of the electromagnetic environment ω±

(+ for j = 1 and − for j = 2) are defined as

(ω±
ωL

)2

=
1

2

(κ1 + κ3
l1

+
κ2 + κ3
l2

)

±
√

1

4

(κ1
l1

− κ2
l2

)2

+
[κ3
2

( 1

l1
+

1

l2

)]2
+
κ3
2

( 1

l1
− 1

l2

)(κ1
l1

− κ2
l2

)
, (A.20)

where κi = C/Ci (i = 1, 2, 3) and lj = Lj/LΣ ( j = 1, 2). In Fig.A.2 ω± are shown
as function of ratio of external inductance L1/L2. The canonical variables Q

′
i and ϕ

′
i

satisfy the following commutation relation:

[Q′
i, ϕ

′
j ] = i�δi,j , [Q′

i, Q
′
j ] = [ϕ′

i, ϕ
′
j ] = 0, (A.21)

where charge operators Q′
1 and Q′

2 are carried by external circuit, and its spectrum
is continuous. On the other hand, Q′

3 is related to the charging of island q as follows:

Q′
3 = −

√
C

CΣ
q, (A.22)

where q occurred by single electron tunneling is quantized by

q|m〉 = me|m〉, (A.23)
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L1/L2

Fig. A.2 The non-zero eigenmodes of the electromagnetic environment ω± ver-
sus environmental asymmetry. Parameters are tentatively chosen as ω±/ωL vs
L1/L2. C1/C2 = 1, C3/C2 = 1.

where m and |m〉 are an integer and an eigenstate of q when the island charge is
me. Therefore a spectrum of Q′

3 is quantized. The tunnel Hamiltonian describing
tunneling between double junctions as following:

HT =
∑
i=1,2

{∑
kk′σ

T
(i)
kk′e

i e
�
φia

(i)†
kσ a

(c)
k′σ + T

(i)∗
kk′ e

−i e
�
φia

(c)†
k′σ a

(i)
kσ

}
, (A.24)

where

φi(t) =Vit+ ϕi(t), (A.25)

ϕi(t) =

3∑
j=1

√
κiηijϕ

′
j = ϕi,env + ϕi,c, (A.26)

ϕi,env ≡
2∑

j=1

√
κiηijϕ

′
j , ϕ

(c)
i ≡ √

κiηi3ϕ
′
3, (A.27)

and ηij is an ij component of Unitary matrix to transform to diagonal picture.

A.2 Correlation functions of phases

Both environmental and charging effects are specified by correlation functions of
phases which are canonical conjugate to continuous charge and quantized charge.
Phase correlation functions which describe in Keldysh space of the electromagnetic

environmental effect F̌ (i)
λλ′,env(t, t

′) and the charging effect F̌ (i)
λλ′,c(t, t

′) are given by

F̌ (i)
λλ′,env(t, t

′) ≡ −i〈 TCK
eiλ

e
�
ϕ

(α)
i,env(t)eiλ

′ e
�
ϕ

(α)
i,env(t

′)〉K0
, (A.28)

F̌ (i)
λλ′,c(t, t

′) ≡ −i〈TCK
eiλ

e
�
ϕi,c(t)eiλ

′ e
�
ϕi,c(t

′)〉K0
= F̌ (i)

λ−λ,c(t− t′)δλ′,−λ. (A.29)
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Environmental effect Hamiltonian Henv is a type of harmonic oscillator, so introducing

creation and annihilation operator of boson b†j and bj , Henv is enable to be rewritten
by

Henv =
∑
α

2∑
j=1

�ωj

(
b†jbj +

1

2

)
, (A.30)

where creation and annihilation operators are given by

b†j =

√
ωjC

2�
ϕ′ − i

1√
2�ωjC

(
Q′ − CV ′

j

)
,

bj =

√
ωjC

2�
ϕ′ + i

1√
2�ωjC

(
Q′ − CV ′

j

)
,

(A.31)

with [bj , b
†
j′ ] = δjj′ and using Campbell-Baker-Hausdorff formula

eA+B = eAeBe−[A,B]/2, (A.32)

only if [A, [A,B]] = [B, [A,B]] = 0, environmental phase correlation function in
Eq.(A.28) is obtained as

Fμμ′(i)
+−,env(t, t

′) = exp

⎧⎨
⎩

2∑
j=1

κiη
2
ijEc

�ωj
J
(i)μμ′
+− (t, t′)

⎫⎬
⎭

= Fμμ′(i)
−+,env(t, t

′) , (A.33)

where μμ′ means the matrix components in Keldysh space and the diagonal compo-
nents are given by(

J
(i)−−
+− (t, t′)
J
(i)++
+− (t, t′)

)
= coth

β�ωj

2

(
cosωj(t− t′)− 1

)∓i sinωj |t− t′|, (A.34)

and the off-diagonal components are given by(
J
(i)−+
+−,c (t, t′)
J
(i)+−
+−,c (t, t′)

)
= coth

β�ωj

2

(
cosωj(t− t′)− 1

)±i sinωj(t− t′), (A.35)

and charging energy is given by Ec = e2/2C. Note that F̌ (i)
λλ′,env(t, t

′) depends on
environmental impedance.

On the other hand, correlation function F̌ (i)
λλ′,c(t, t

′) is independent of environmental
impedance. In this case calculation is also straightforward to note that

e±i e
�
ϕi,c |m〉 = |m± 1〉, (A.36)

for the eigenstate of q = −√
CΣ/C ·Q′

3, we obtain

(
F (i)−−

−+,c (t, t′)
F (i)++

−+,c (t, t′)

)
= −i

∞∑
m=0

e−βU(m−nc)
2

e−iU
�
[2(m−nc)(t−t′)±|t−t′|]

∞∑
m=0

e−βU(m−nc)
2

=

(
F (i)++

+−,c (t, t′)
F (i)−−

+−,c (t, t′)

)
, (A.37)
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(
F (i)−+

−+,c (t, t′)
F (i)+−

−+,c (t, t′)

)
= −i

∞∑
m=0

e−βU(m−nc)
2

e−iU
�
[2(m−nc)∓1](t−t′)

∞∑
m=0

e−βU(m−nc)
2

=

(
F (i)+−

+−,c (t, t′)
F (i)−+

+−,c (t, t′)

)
. (A.38)
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Appendix B

Derivation of the cumulant

generating function

The first derivative of CGF in Eq.(3.52) is

∂Ω({χα})
∂(iχα)

= lim
T0→∞

1

T0

∂iχα
Z({χα}, T0)

Z({χα}, T0) , (B.1)

where Z({χα}, T0) is the characteristic function defined in Eq.(3.51).

∂Ω({χα})
∂(iχα)

= lim
T0→∞

1

T0

∂iχα
Z({χα}, T0

2 ,−T0

2 )

Z({χα}; T0

2 ,−T0

2 )

= lim
T0→∞

1

T0

1

Z({χα})

{
Tr

[
ρ0
∂U+

(
{χα};−T0

2 ,
T0

2

)
∂(iχα)

U−
(
{χα}; T0

2
,−T0

2

)

+ U+

(
{χα};−T0

2
,
T0
2

)∂U−
(
{χα}; T0

2 ,−T0

2

)
∂(iχα)

]}

= lim
T0→∞

1

T0

1

�

1

Z({χα}, T0)
∫ T0

2

−T0
2

dt1

×
{
Tr

[
ρ0

{
U+

({χα};−T0
2
, t1

)(
∂iχα

ĤT,+({χα}, t1)
)

× U+

({χα}; t1, T0
2

)
U−

({χα}; T0
2
,−T0

2

)
− U+

({χα}; T0
2
,−T0

2

)
U−

({χα}; T0
2
, t1

)
×

(
∂iχα

ĤT,−({χα}, t1)
)
U−

({χα}; t1,−T0
2

)}]}

= lim
T0→∞

1

T0

i

�

∫ T0
2

−T0
2

dt1

{〈〈
∂iχα

ĤT,+({χα}, t1)
)〉

K0T0

−
〈(
∂iχα

ĤT,−({χα}, t1)
)〉

K0T0

}
. (B.2)
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Let us here define the counting field dependent Green’s function with finite time
interval (−T0/2, T0/2) by

Ǧνν′ ({χα};kσ, t;k′σ′, t′) ≡ −i

〈
TCΨ̂

(ν)
kσ (t)Ψ̂

(ν′)†
k′σ′ (t

′)

〉
K({χα}),T0

, (B.3)

(ν, ν′ = c, dα, aα)

Ǧ(0)
dαi(kσ; t, t

′) ≡ −i

〈
TCΨ̂

(dαi)
kσ (t)Ψ̂

(dαi)†
kσ (t′)

〉
K0T0

. (B.4)

(i = 1, 2)

Note that the average 〈· · · 〉T0
is not genuine statistical average and these Green’s

functions do not depend time difference t − t′ in general, unless the limit T0 → ∞
is taken. In what follows we do not express spin indices for simplicity, since the
fundamental tunneling processes never change spin orientation.

Noting Eq.(3.56) and Eq.(3.57)

Ťcdα
(χα) ≡

(
T̂cdα

e
i
2χατ̂3 , 0

0, −T̂cdα
e−

i
2χατ̂3

)
≡

(
Ť−−
cdα

(χα) Ť−+
cdα

(χα)

Ť+−
cdα

(χα) Ť++
cdα

(χα)

)

= Ťdαc(χα)
∗ , (B.5)

Ťaαdα
(χα) ≡

(
T̂aαdα

e
i
2χατ̂3 , 0

0, −T̂aαdα
e−

i
2χατ̂3

)
≡

(
Ť−−
aαdα

(χα) Ť−+
aαdα

(χα)

Ť+−
aαdα

(χα) Ť++
aαdα

(χα)

)

= Ťdαaα
(χα)

∗ , (B.6)

we obtain

∂Ω({χα})
∂(iχα)

= lim
T0→∞

1

T0

{ 1

4�

∑
kk′

∫ T0/2

−T0/2

TrNG

×
[
Ť−−
cdα

(χα)τ̂3Ǧ−−
dαc(k,k

′; t−, t− + δ)− Ť−−
dαc (χα)τ̂3Ǧ−−

cdα
(k,k′; t−, t− + δ)

+ Ť++
cdα

(χα)τ̂3Ǧ++
dαc(k,k

′; t+ + δ, t+)− Ť++
dαc (χα)τ̂3Ǧ++

cdα
(k,k′; t+ + δ, t+)

+ Ť−−
aαdα

(χα)τ̂3Ǧ−−
dαaα

(k,k′; t−, t− + δ) − Ť−−
dαaα

(χα)τ̂3Ǧ−−
aαdα

(k,k′; t−, t− + δ)

+ Ť++
aαdα

(χα)τ̂3Ǧ++
dαaα

(k,k′; t+ + δ, t+)− Ť++
dαaα

(χα)τ̂3Ǧ++
aαdα

(k,k′; t+ + δ, t+)
]}

.

(B.7)

Solving the equations of motion for Ǧνν′ ({χα};kσ, tλ;k′σ′, t′λ′), we obtain

Ǧcdα
(k,k′; t, t′) � 1

�

∑
k′′

∫
C

dτ Ǧcc(k,k
′′; t, τ)Ťcdα

(χα(τ))Ǧ(0)
dα1(k

′; τ, t′) , (B.8)

Ǧdαc(k,k
′; t, t′) � 1

�

∑
k′′

∫
C

dτ Ǧ(0)
dα1(k; t, τ)Ťdαc(χα(τ))Ǧcc(k

′′,k′; τ, t′) , (B.9)

Ǧaαdα
(k,k′; t, t′) � 1

�

∑
k′′

∫
C

dτ Ǧcc(k,k
′′; t, τ)Ťaαdα

(χα(τ))Ǧ(0)
dα2(k

′; τ, t′) , (B.10)

Ǧdαaα
(k,k′; t, t′) � 1

�

∑
k′′

∫
C

dτ Ǧ(0)
dα2(k; t, τ)Ťdαaα

(χα(τ))Ǧaαaα
(k′′,k′; τ, t′) . (B.11)
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In deriving from Eq.(B.8) to Eq.(B.11) we only retained up to the two-body corre-
lation for environmental and charging phases. Concerning the electromagnetic envi-
ronment effect, this approximation never spoils a reasonable description of physics.
Charge (voltage) fluctuation in low environmental impedance case and stabilization
of Coulomb blockade (enhancement of Coulomb gap region etc.) in high impedance
case are still well described. Furthermore, we also introduced approximation that
the lowest order Green’s functions of island electrons only convey informations of en-
vironmental and charging effects. Concerning the charging effect, it is known that
Coulomb blockade related phenomena such as Coulomb staircase and Coulomb oscil-
lation can be well described within this approximation. Note that the quenching of a
certain class of tunneling processes due to charge quantization can be automatically
excluded from the beginning, since the charging phase correlation is decoupled from
the off-diagonal Gor’kov Green’s functions.

Substituting these Dyson equations into Eq.(B.7) and noting that the lowest order
island green’s function is diagonal in Nambu-Gor’kov space, we arrive at

∂Ω({χα})
∂(iχα)

= lim
T0→∞

1

T0

{ 1

4�

∑
kk′

∫
C

dτ

∫
C

dτ ′TrNG⊗SK

×
[
Ťcdα

(χα(τ))Ťdαc(χα(τ
′))τ̂3Ǧcc(τ, τ

′)Ǧ(0)
dα1(τ

′, τ)

Ťaαdα
(χα(τ))Ťdαaα

(χα(τ
′))τ̂3Ǧaαaα

(τ, τ ′)Ǧ(0)
dα2(τ

′, τ)
]
. (B.12)

Furthermore, from the solution of the equation of motion for Ǧcc(t, t
′), we have

Ǧcc(t, t
′) = Ǧ(0)

c (t, t′) +
∫
C

∫
C

dτdτ ′Ǧ(0)
c (t, τ)

×
[∑

α

Ťcdα
(χα(τ))Ťdαc(χα(τ

′))Ǧ(0)
dα1(τ, τ

′)

]
Ǧcc(τ

′, t′) ,

≡ Ǧ(0)
c (t, t′) +

∫
C

∫
C

dτdτ ′Ǧ(0)
c (t, τ)

1

�
Šc(χα(τ), χα(τ

′); τ, τ ′) Ǧcc(τ
′, t′) ,

(B.13)

Ǧaαaα
(t, t′) = Ǧ(0)

aα
(t, t′) +

∫
C

∫
C

dτdτ ′Ǧ(0)
aα

(t, τ)

×
[
Ťcdα

(χα(τ))Ťdαc(χα(τ
′))Ǧ(0)

dα1(τ, τ
′)
]
Ǧaαaα

(τ ′, t′) ,

≡ Ǧ(0)
aα

(t, t′) +
∫
C

∫
C

dτdτ ′
1

�
Šα(χα(τ), χα(τ

′); τ, τ ′) Ǧaαaα
(τ ′, t′) ,

(B.14)

where we defined self-energies Šc and Šα for Ǧcc and Ǧaαaα
, respectively.

Now let us take the limit T0 → ∞. Noting that Ǧ(t, t′) → Ǧ(t− t′) and Š(t, t′) →
Σ̌(t− t′), and performing the Fourier transformation, we arrive at

∂Ω({χα})
∂(iχα)

=
1

2

∑
σ

∫ ∞

−∞

dω

2π

×TrSK⊗NG

[
− ǧc(ω)(∂iχα

Σ̌c({χα}, ω)/�)
1̌− ǧcc(ω)Σ̌c({χα}, ω)/�

− ǧaα
(ω)(∂iχα

Σ̌aα
(χα, ω)/�)

1̌− ǧaα
(ω)Σ̌aα

(χα, ω)/�

]
.

(B.15)
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Therefore, we finally have the following expression for cumulant generation function:

Ω({χα}) = 1

2

∑
σ

∫ ∞

−∞

dω

2π
TrSK⊗NG

{
log

[
1̌− ǧcc(ω)Σ̌c({χα}, ω)/�
1̌− ǧcc(ω)Σ̌c(0;ω)/�

]

+
∑

α=L,R

log

[
1̌− ǧaαaα

(ω)Σ̌aα
(χα, ω)/�

1̌− ǧaαaα
(ω)Σ̌aα

(0;ω)/�

]}
. (B.16)

Note that the result satisfies boundary condition

Ω({χα} = 0) = 0 . (B.17)
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Appendix C

The lowest order Green’s

functions

The lowest order Green’s functions of electrons in various electrodes are given as
follows :

(i) Normalconducting Electrodes

g−+
aα11(ω) = g−+

aα22(ω) = 2iπ�Naα
(0) nF(ε) , (C.1)

g+−
aα11(ω) = g+−

aα22(ω) = −2iπ�Naα
(0) nF(−ε) , (C.2)

gRaα11(ω) = gRaα22(ω) =
[
gAaα11(ω)

]∗
=

[
gAaα22(ω)

]∗
= −iπ�Naα

(0) . (C.3)

(ii) Superconducting Electrodes

g−+
c11 (ω) = g−+

c22 (ω) = 2iπ�Nc(0)
|ε|√

ε2 −Δ2
nF(ε) (|ε| > Δ) , (C.4)

g+−
c11 (ω) = g+−

c22 (ω) = −2iπ�Nc(0)
|ε|√

ε2 −Δ2
nF(−ε) (|ε| > Δ) , (C.5)

gRc11(ω) = gRc22(ω) =
[
gAc11(ω)

]∗
=

[
gAc22(ω)

]∗

=

{ −π�Nc(0)
ε√

Δ2 − ε2
(|ε| < Δ)

−iπ�Nc(0)
|ε|√

ε2 −Δ2
(|ε| > Δ)

, (C.6)

g−+
c12 (ω) = g−+

c21 (ω) = 2i · sgn(ε)π�Nc(0)
Δ√

ε2 −Δ2
nF(ε) (|ε| > Δ) , (C.7)

g+−
c12 (ω) = g+−

c21 (ω) = −2i · sgn(ε)π�Nc(0)
Δ√

ε2 −Δ2
nF(−ε) (|ε| > Δ) , (C.8)

gRc12(ω) = gRc21(ω) =
[
gAc21(ω)

]∗
=

[
gAc12(ω)

]∗

=

{ −π�Nc(0)
Δ√

Δ2 − ε2
(|ε| < Δ)

−i · sgn(ε)π� Nc(0)
Δ√

ε2 −Δ2
(|ε| > Δ)

. (C.9)
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(iii) Normalconducting Islands

g−+
dαi11

(ω) = 2iπ�Ndα
(0)

∫ ∞

−∞

dω′

2π
iF (αi)−+

+− (ω′)nF(ε− ε′) , (C.10)

g+−
dαi11

(ω) = −2iπ�Ndα
(0)

∫ ∞

−∞

dω′

2π
iF (αi)+−

+− (ω′)
[
1− nF(ε− ε′)

]
, (C.11)

gRdαi11(ω) =
[
gAdα11(ω)

]∗
= −iπ�Ndα

(0)

{
1 +

∫ ∞

−∞

dω′

2π
iF (αi)R

+− (ω′)
[
1− 2nF(ε− ε′)

]}
, (C.12)

g−+
dαi22

(ω) = 2iπ�Ndα
(0)

∫ ∞

−∞

dω′

2π
iF (αi)−+

−+ (ω′) nF(ε− ε′) , (C.13)

g+−
dαi22

(ω) = −2iπ�Ndα
(0)

∫ ∞

−∞

dω′

2π
iF (αi)+−

−+ (ω′)
[
1− nF(ε− ε′)

]
, (C.14)

gRdαi22(ω) =
[
gAdαi22(ω)

]∗
= −iπ�Ndα

(0)

{
1 +

∫ ∞

−∞

dω′

2π
iF (αi)R

−+ (ω′)
[
1− 2nF(ε− ε′)

]}
, (C.15)

where F (αi)
λλ′ (ω) = F (αi)

λλ′,env(ω)F (αi)
λλ′,c(ω). In the above, ε = �ω, and nF(ε) = [exp(βε)+

1]−1 and Nν(0) are, respectively, Fermi distribution function and the density of states
at Fermi energy for the metal of electrode ν.
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