
STABLE DOUBLE POINT NUMBERS OF
PAIRS OF SPHERICAL CURVES

TSUYOSHI KOBAYASHI AND SUMIKA KOBAYASHI

Abstract. For a pair of spherical curves P and P ′, we introduce a quantity called
the stable double point number of P and P ′, denoted sd(P, P ′). A trivial spherical
curve is a spherical curve with no double point, denoted ⃝. In this paper, we prove
two results relevant to the question whether sd(P,⃝) ≤ d([P ]) + 1 holds or not,
where d([P ]) denotes the double point number. One is a positive result. Concre-
atly speaking, we show that each 2-bridge spherical curve denoted C(a1, a2, . . . , an)
satisfies sd(C(a1, a2, . . . , an),⃝) ≤ d([C(a1, a2, . . . , an)]) + 1. The other is a nega-
tive result. Concreatly speaking, we show that the pretzel spherical curve denoted
P (m; 5) (m: odd integer, ≥ 5) satisfies sd(P (m; 5),⃝) = d([P (m; 5)]) + 2.

1. Introduction

A spherical curve is the image of a generic immersion of a circle into a 2-sphere.
A trivial spherical curve is a spherical curve with no double point. We say that a
spherical curve P ′ is obtained from a spherical curve P by a deformation of type RI
(type RII, type RIII resp.) if P ′ is obtained from P by replacing the part contained in
a disk as in Figure 1. It is known that any two spherical curves can be transformed
each other by a finite sequence of deformations of type RI, type RII, or type RIII, and
ambient isotopies, i.e. for any pair of spherical curves P and P ′, there is a sequence
of spherical curves

P = P0 → P1 → · · · → Pn = P ′

such that Pi+1 is obtained from Pi (i = 0, 1, . . . , n− 1) by a deformation of type RI,
RII or RIII (up to ambient isotopy).

Suppose that a spherical curve P ′ is obtained from a spherical curve P by a
deformation of type RI. We say that P ′ is obtained from P by a deformation of type
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RI+ (type RI− resp.), if the number of double points of P ′ is greater (less resp.) than
that of P . See Figure 1.

Figure 1. Deformations of type RI, RII, RIII

In 2001, Östlund [7] had asked whether, for any plane curve P , a trivial plane
curve is obtained from P by a sequence of deformations of type RI or type RIII, or
not. Then Hagge and Yazinski [3] gave a negative answer to this question. In fact,
they showed that the plane curve PHY in Figure 2 can not be transformed to a trivial
plane curve by any sequence of deformations of type RI and type RIII. Although the
original question is concerned with plane curves, it is natural to ask the same issue
for spherical curves. This was studied by Ito and Takimura [5] [6], and they showed
the following.

Figure 2. PHY

We say that spherical curves P and P ′ are RI, RIII-equivalent (or P ′ is RI, RIII-
equivalent to P ) if there is a sequence of spherical curves

P = P0 → P1 → · · · → Pn = P ′
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such that Pi+1 is obtained from Pi (i = 0, 1, . . . , n − 1) by a deformation of type
RI, or RIII (up to ambient isotopy). In [5], Ito and Takimura showed that there are
infinitely many spherical curves that are not RI, RIII-equivalent to a trivial spherical
curve. Further in [6], they showed that there are infinitely many spherical curves
that are not mutually RI, RIII-equivalent. This result leads us to:

Problem. Study the pairs of spherical curves that are RI, RIII-equivalent, or not
RI, RIII-equivalent.

In this paper, we introduce a 1-complex for studying the problem by mimicking
the arguments in [1]. Let us introduce the construction. Let C be the set of the
ambient isotopy classes of the spherical curves. We say that two elements v and v′

of C are RI-equivalent, denoted by v ∼RI v
′, if there are representatives P, P ′ of v, v′

respectively such that P ′ is obtained from P by a sequence of deformations of type
RI and ambient isotopies. We note that ∼RI is an equivalence relation on C (see

Proposition 1.1 of [1]). Then C̃ denotes the quotient set C/ ∼RI and for a spherical
curve P , [P ] denotes the equivalence class containing the ambient isotopy class of P .

Then we obtain a 1-complex, denoted K̃3 by:

• the set of vertices of K̃3 corresponds to C̃, and
• two vertices v and v′ are joined by an edge if there are representatives P and
P ′ of v and v′ respectively such that P ′ is obtained from P by a sequence
consisting of exactly one deformation of type RIII, and some (possibly, empty)
deformation(s) of type RI (up to ambient isotopy).

We note that K̃3 is not connected. In fact, the above mentioned result in [6] implies

that there are infinitely many components in K̃3. In this paper, we propose more

subtle treatment of K̃3. Concreatly speaking, for a pair of spherical curves (P, P ′),
we introduce the quantity sd(P, P ′) called stable double point number of P and P ′

as follows.

Let C̃, K̃3 be as above. For each v ∈ C̃ (: the vertices of K̃3), we define the double
point number of v, denoted d(v), by

d(v) := min{the number of the double points of P |P : a representative of v}.
For a pair of spherical curves (P , P ′), we define the stable double point number of
(P , P ′), denoted sd(P, P ′), as follows.

Let L(P, P ′) be the set of paths in K̃3 connecting [P ] and [P ′]. For L ∈ L(P ,P ′),
V (L) denotes the set of the vertices of L. Then, we define sd(P, P ′) by:

sd(P, P ′) := min
L∈L(P,P ′)

{ max
v∈V (L)

{d(v)}}
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if P and P ′ are RI, RIII-equivalent, and sd(P, P ′) := ∞ if P and P ′ are not RI,
RIII-equivalent.

Remark 1.1. It is clear from the definition, that

sd(P, P ′) ≥ max {d([P ]), d([P ′])}.

Let P be a spherical curve. Each component of S2 \P is called a region of P . Let
R be a region of P . We call R an n-gon, if R has n corners. In particular, 3-gon is
called a triangle. The next proposition shows that there exist many pairs of spherical
curves (P, P ′) such that sd(P, P ′) < ∞, and sd(P, P ′) > max {d([P ]), d([P ′])}.

Proposition 1.1. Let (P , P ′) be a pair of spherical curves such that [P ] ̸= [P ′],
d([P ′]) ≤ d([P ]). Suppose that each region of P is not a 1-gon or a triangle. Then
we have:

sd(P, P ′) ≥ d([P ]) + 1.

By Proposition 1.1, it is natural to ask:

Question. For any pair of spherical curves (P, P ′), does the inequality

sd(P, P ′) ≤ max {d([P ]), d([P ′])}+ 1

hold? In particular, for each spherical curve P that is RI, RIII-equivalent to ⃝, does
the inequality

sd(P,⃝) ≤ d([P ]) + 1

hold, where ⃝ denotes a trivial spherical curve?

We give two results concerning the question. One is a positive result. In Theo-
rem 3.1, we show that each 2-bridge spherical curve denoted C(a1, a2, . . . , an) (for
the definition, see Section 3.2) satisfies:

sd(C(a1, a2, . . . , an),⃝) = d([C(a1, a2, . . . , an)]), or
d([C(a1, a2, . . . , an)]) + 1.

The other is a negative result. In Theorem 3.2, we show that the pretzel spherical
curve (for the definition, see Section 3.4) denoted P (m; 5) (m: odd integer, ≥ 5)
satisfies:

sd(P (m; 5),⃝) = d([P (m; 5)]) + 2.

2. Preliminaries

2.1. Deformation of type α and type β. The spherical curve P is called RI-
minimal if each region of P is not a 1-gon. For any spherical curve P , we obtain
an RI-minimal spherical curve by successively applying deformations of type RI−. It



STABLE DOUBLE POINT NUMBERS OF PAIRS OF SPHERICAL CURVES 5

is known that such spherical curves are mutually ambient isotopic, and reduced(P )
denotes such a spherical curve.

Remark 2.1. Let P be a spherical curve. Recall from Section 1 that d([P ]) de-
notes the double point number of the RI-equivalence class containing P . Then it is
elementary to show:

d([P ]) =the number of the double points of reduced(P ).

Definition 2.1 (Deformations of type α). For spherical curves P and P ′, we say
that P ′ is obtained from P by a deformation of type α, if P ′ is obtained by replacing
the part of P contained in a disk as in Figure 3. We say that P ′ is obtained from P
by a deformation of type α+ (type α− resp.), if the number of double points of P ′ is
greater (less resp.) than that of P . See Figure 3.

Figure 3. Deformation of type α

Remark 2.2. We note that the deformation of type α is realized by using a defor-
mation of type RI and a deformation of type RIII. See Figure 11 of [1].

Further in [4], another deformation called a deformation of type β (type β± resp.)
is defined. Roughly speaking, we say that P ′ is obtained from P by a deformation
of type β+, if P ′ is obtained from P by successively applying connected sum with
(possibly, empty) spherical curve(s) with one double point(s) and one spherical curve
of trefoil type in a non trivial manner. See Figure 4. For the precise definition, see
[4]. Note that P ′ contains linearly arrayed 3 regions consisting of 2-gon, triangle,
and 2-gon corresponding to shaded regions in Figure 4. We call the union of such
regions a β-realm. Then it clear from Figure 4, we cannot perform a deformation of
type β− unless there exists β-realm. Then the next proposition is proved in [4].



6 TSUYOSHI KOBAYASHI AND SUMIKA KOBAYASHI

Figure 4. Deformation of type β

Proposition 2.1 ([4]). Let P , P ′ be spherical curves. Then P ′ is obtained from P
by a sequence consisting of one deformation of type RIII, and some deformation(s) of

type RI (i.e., [P ] and [P ′] are adjacent in K̃3) if and only if reduced(P ′) is obtained
from reduced(P ) by exactly one deformation that is of type RIII, type α, or type β
(up to ambient isotopy).

2.2. Specifications for the deformations. Let P (⊂ S2) be a spherical curve.
Suppose that P ′ is obtained from P by a deformation of type RI+. Then we may
suppose, by an ambient isotopy, that the deformation is performed in a very small
region, and we will specify the place where the deformation is performed by a dot
on P . See Figure 5. We call it the dot relevant to the deformation (of type RI+).

Figure 5. The dot relevant to the deformation of type RI+

Suppose that P ′ is obtained from P by a deformation of type RI−. Then we can
specify the 1-gon contained in the disk where the deformation is performed. See
Figure 6. We call it the 1-gon relevant to the deformation (of type RI−).
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Figure 6. The 1-gon relevant to the deformation of type RI−

Suppose that P ′ is obtained from P by a deformation of type RIII. Then we can
specify the triangle contained in the disk where the deformation is performed. See
Figure 7. We call it the triangle relevant to the deformation (of type RIII).

Figure 7. The triangle relevant to the deformation of type RIII

Suppose that P ′ is obtained from P by a deformation of type α−. Then we
can specify the union of a 2-gon and a triangle contained in the disk where the
deformation is performed. See Figure 8. We call the union of the 2-gon and the
triangle the 1-gon with a crack relevant to the deformation (of type α−).

Figure 8. The 1-gon with a crack relevant to the deformation of type α−

Suppose that P ′ is obtained from P by a deformation of type α+. Then we can
specify the 2-gon contained in the disk where the deformation is performed. Here we
note that there are two essentially different ways of performing α+ along the 2-gon
(Figure 9).
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Figure 9. Two deformations of type α+, which are essentially defferent

We will specify the type of the deformation by adding a dotted arc that is parallel
to an edge of the 2-gon as in Figure 10. We call the union of them the 2-gon
with a dotted arc relevant to the deformation (of type α+). We may regard that
P ′ is obtained from P by squeezing the endpoints of the dotted arc along it. See
Figure 11.

Figure 10. The 2-gon with a dotted arc relevant to the deformation
of type α+

Figure 11. Squeezing the endpoints of the dotted arc

Let E be a subsurface in S2 such that ∂E is in a general position with respect to P .
Suppose that P ′ is obtained from P by a deformation of type RI+ (RI−, RIII, α+, α−

resp.). We say that the deformation is performed within E if the dot (1-gon, triangle,
1-gon with a crack, 2-gon with a dotted arc resp.) relevant to the deformation is
contained in E. The next proposition may look clear to the reader, but we think it
is worth giving the statement to understand the proof of Theorem 3.2.

Proposition 2.2. Let P , P ′, E be as above. Suppose that the deformation is per-
formed within E. Then there exists a disk D in E such that there is a spherical curve

P̃ ′ satisfying the following conditions.
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(1) P̃ ′ is ambient isotopic to P ′,

(2) P̃ ′ \D = P \D, and

(3) P̃ ′ is obtained from P by replacing the part P ∩D as in Figure 1 or Figure 3.

Proof. We divide the proof into the following cases.

Case 1: The deformation is of type RI+.
Since the dot relevant to the deformation is contained in E, the proposition is

clear.

Case 2: The deformation is of type RI−.
We may regard that the deformation is performed in a very small disk contain-

ing the double point adjacent to the 1-gon, and this gives the conclusion of the
proposition. See Figure 12.

Figure 12. The deformation of type RI− is realized within E

Case 3: The deformation is of type RIII.
By Figure 13, we see that the proposition holds.

Figure 13. The deformation of type RIII is realized within E

Case 4: The deformation is of type α−.

In this case, we may regard that P̃ ′ is obtained from P by deforming P in a small
disk containing the double point adjacent to the 1-gon with a crack as in Figure 14,
and this shows that the proposition holds.
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Figure 14. The deformation of type α− is realized within E

Case 5: The deformation is of type α+.
In this case, since we may suppose the dotted arc relevant to the deformation is

contained in E, we see that the proposition holds. See Figure 15.

Figure 15. The deformation of type α+ is realized within E

□

3. Results

In this section, we give proofs of the results of this paper (Proposition 1.1, Theo-
rems 3.1, 3.2).

3.1. Proof of Proposition 1.1.

Proof. Let P = P0 → P1 → · · · → Pn = P ′ be a sequence of spherical curves
such that Pi+1 is obtained from Pi by a deformation of type RI or type RIII (i =
0, 1, . . . , n− 1). Suppose that Pj → Pj+1 is the first deformation of type RIII in the
sequence (hence, the deformations in P0 → P1 → · · · → Pj are of type RI). Hence
[reduced(Pj)]=[reduced(P )]. The assumption of the proposition (each region of P is
not a 1-gon) implies that reduced(P )=P . Then by Proposition 2.1, we may suppose
that reduced(Pj+1) is obtained from reduced(Pj) by a deformation of type RIII, type
α, or type β. These facts show that
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(∗) reduced(Pj+1) is obtained from P by a deformation of type RIII , type α, or type
β.

Then we note that each region of P is not a triangle by the assumption of the
proposition. This shows that the deformation P→ reduced(Pj+1) is not of type RIII,
type α−, or type β−. If the deformation is of type α+, then by Remark 2.1 and (∗)
we have

d([Pj+1]) = d([P ]) + 1.

If the deformation is of type β+, then by Remark 2.1 and (∗) we have

d([Pj+1]) ≥ d([P ]) + 3.

These imply that sd(P, P ′) ≥ d([P ]) + 1, and this completes the proof of the propo-
sition. □

3.2. 2-bridge spherical curves. For an n-tuple of positive integers a1, a2, . . . , an
(n ≥ 1), let C(a1, a2, . . . , an) be a curve as in Figure 16, where C(a1, a2, . . . , an)
intersects each rectangular region Bi (i = 1, 2, . . . , n) in curves as in Figure 16. It is
known that if (a1, a2, . . . , an) satisfies the following condition, then C(a1, a2, . . . , an)
is a spherical curve. (See Proposition 1 of [2].)

Consider the irreducible fraction p/q derived from (a1, a2, . . . , an) by using the con-
tinued fraction

p

q
= a1 +

1

a2 +
1

···+ 1
an

.

Then p is an odd integer.

We call such spherical curve C(a1, a2, . . . , an) a 2-bridge spherical curve of type
(a1, a2, . . . , an).
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Figure 16. C(a1, a2, . . . , an)

Remark 3.1. It is directly observed from Figure 16, that

C(1, a2, a3, . . . , an) = C(a2 + 1, a3, . . . , an),

C(a1, a2, . . . , an−1, 1) = C(a1, a2, . . . , an−1 + 1).

By Remark 3.1, we may suppose a1 > 1 and an > 1, unless n = 1, a1 = 1.

Remark 3.2. It is directly observed from Figure 16, that

d([C(a1, a2, . . . , an)]) = a1 + a2 + · · ·+ an
unless n = 1, a1 = 1.

It is shown in Proposition 2 of [6] that each C(a1, a2, . . . , an) is RI, RIII-equivalent
to a trivial spherical curve. We give a strengthened version of this result, which
studies the stable double point numbers.

Theorem 3.1. For each 2-bridge spherical curve C(a1, a2, . . . , an), we have

sd(C(a1, a2, . . . , an),⃝) = d([C(a1, a2, . . . , an)])(= a1 + a2 + · · ·+ an), or
d([C(a1, a2, . . . , an)]) + 1(= a1 + a2 + · · ·+ an + 1)

unless n = 1, a1 = 1.
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Proof. We prove the theorem by the induction on n. We remark that we first prove
the theorem for the case of n = 2. Then we prove for the case of n = 1, and general
cases.

Suppose that n = 2. Since C(a1, a2) is a spherical curve, we may suppose, without
loss of generality, that a1 is an even number. We devide the proof into the following
two cases.

Case 1: a1 = 2.
In this case, we see that there is a 1-gon with a crack as in Figure 17 (a). Hence we

can apply the deformation of type α− by using the 1-gon with a crack to obtain the
2-bridge spherical curve C(2, a2 − 1). By repeatedly applying such deformations a2
times, we obtain a spherical curve as in Figure 17 (b). Then by applying deformations
of type RI− twice, we obtain a trivial spherical curve (Figure 17 (c)). It is easy to
see that these deformations imply

sd(C(2, a2),⃝) = 2 + a2.

Figure 17. C(2, a2)

Case 2: a1 > 2.
In this case, we first apply the deformation of type α+ by using the 2-gon with the

dotted arc as in Figure 18 (a) to obtain the spherical curve of Figure 18 (b). Then
we apply a deformation of type RIII by using the triangle in Figure 18 (b). Further
we repeatedly apply deformations of type RIII a1 − 3 times within B1 to obtain the
spherical curve of Figure 18 (c-1). It is directly observed that the spherical curve
of Figure 18 (c-2) is ambient isotopic to that of Figure 18 (c-1). Then we apply
a deformation of type RIII by using the triangle in Figure 18 (c-2). Further we
repeatedly apply deformations of type RIII a2 − 1 times within B2 to obtain the
spherical curve of Figure 18 (d). Then we apply the deformation of type α− by using
the 1-gon with a crack as in Figure 18 (d) to obtain the spherical curve as in Figure 18
(e), that is C(a1−2, a2+2). These show that sd(C(a1, a2), C(a1−2, a2+2)) ≤ a1+a2+
1. On the other hand, by Proposition 1.1, we see that sd(C(a1, a2), C(a1−2, a2+2)) ≥
a1 + a2 + 1, and these show that sd(C(a1, a2), C(a1 − 2, a2 + 2)) = a1 + a2 + 1.
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Figure 18. C(a1, a2)(a1 > 2)

By repeatedly applying the deformations of Figure 18 (a1−2)/2 times on C(a1, a2),
we obtain C(2, a1 + a2 − 2). Further we see that sd(C(a1, a2), C(2, a1 + a2 − 2)) =
a1 + a2 + 1. This together with Case 1 above and Proposition 1.1, we see that

sd(C(a1, a2),⃝) = a1 + a2 + 1.

These complete the proof of Theorem 3.1 for the case of n = 2.

Suppose that n = 1. Since C(a1) is a spherical curve, we see that a1 is an odd
integer. If a1 = 3, by Figure 19, we see that sd(C(3),⃝) = 3.
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Figure 19. C(3)

Suppose that a1 > 3. By Figure 20, we see that we can obtain C(3, a1 − 3) from
C(a1) by successively applying α

+, RIII, and α−, and this shows that sd(C(a1), C(3, a1−
3)) ≤ a1+1. On the other hand, by Proposition 1.1, we see that sd(C(a1), C(3, a1−
3)) ≥ a1 + 1, and these show that sd(C(a1), C(3, a1 − 3)) = a1 + 1. Then by Case 2
above and Proposition 1.1, we see that

sd(C(a1),⃝) = a1 + 1.

Figure 20. C(a1)(a1 > 3)

These complete the proof of Theorem 3.1 for the case of n = 1.

Now we consider the case of n > 2. We suppose that Theorem 3.1 holds for the
case of n ≤ k. Suppose that n = k + 1. We divide the proof into the following two
cases.

Case A: a1 = 2.
By Figure 21, we see that

sd(C(2, a2, . . . , an), C(a3 + 2, a4, . . . , an)) = 2 + a2 + · · ·+ an

= a1 + a2 + · · ·+ an.
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Figure 21. C(2, a2, . . . an)

Then the assumption of the induction implies

sd(C(a3 + 2, a4, . . . , an),⃝) ≤ (a3 + 2) + a4 + · · ·+ an + 1

≤ 2 + a2 + a3 + · · ·+ an

= a1 + a2 + · · ·+ an.

These show that

sd(C(2, a2, . . . , an),⃝) = 2 + a2 + · · ·+ an

= a1 + a2 + · · ·+ an.

Case B: a1 > 2.
We first prove the next claim.

Claim 3.1.

sd(C(a1, a2, . . . , an−1, an), C(a1−2, a2, . . . , an−1, an+2)) ≤ a1+a2+· · ·+an−1+an+1.

Proof of Claim 3.1. Let P1 be the spherical curve obtained from C(a1, a2, . . . , an) by
applying the deformations of Figure 22.
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Figure 22. C(a1, a2, . . . , an) → P1

By Figure 22, we see that P1 is transformed into the spherical curve P2 in Figure 23
(b) by a sequence consisting of a2 deformations of type RIII.

Figure 23. P1 → P2

We further apply the deformations as in Figure 23 (n−3) times to obtain the spherical
curve Pn−1 as in Figure 24, where B1 contains (a1 − 2) double points of Pn−1, and
Bj (j = 2, 3, . . . , n− 1) contains aj double points of Pn−1.
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Figure 24. Pn−1

If n is an odd number, then we apply the deformations as in Figure 25 to obtain
C(a1 − 2, a2, . . . , an−1, an + 2), and this shows that

sd(C(a1, a2, . . . , an−1, an), C(a1−2, a2, . . . , an−1, an+2)) ≤ a1+a2+· · ·+an−1+an+1.

Figure 25. Pn−1 → C(a1 − 2, a2, . . . , an−1, an + 2)(n: odd)
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If n is an even number, then we apply the deformations as in Figure 26 to obtain
C(a1 − 2, a2, . . . , an−1, an + 2), and this shows that

sd(C(a1, a2, . . . , an−1, an), C(a1−2, a2, . . . , an−1, an+2)) ≤ a1+a2+· · ·+an−1+an+1.

Figure 26. Pn−1 → C(a1 − 2, a2, . . . , an−1, an + 2)(n: even)

These complete the proof of Claim 3.1. □
If a1 is an odd number, then we repeatedly apply the deformations of Claim 3.1

to C(a1, a2, . . . , an−1, an) (a1 − 1)/2 times we see that

sd(C(a1, a2, . . . , an−1, an), C(1, a2, . . . , an−1, an+a1−1)) ≤ a1+a2+· · ·+an−1+an+1.

Since C(1, a2, . . . , an−1, an + a1 − 1) = C(a2 + 1, a3, . . . , an−1, an + a1 − 1), we can
apply the induction to show that

sd(C(1, a2, . . . , an−1, an + a1 − 1),⃝) ≤ 1 + a2 + · · ·+ an−1 + (an + a1 − 1) + 1

= a1 + a2 + · · ·+ an−1 + an + 1.

These show that

sd(C(a1, a2, . . . , an−1, an),⃝) ≤ a1 + a2 + · · ·+ an−1 + an + 1.

If a1 is an even number, then we repeatedly apply the deformations of Claim 3.1
to C(a1, a2, . . . , an−1, an) (a1 − 2)/2 times we see that

sd(C(a1, a2, . . . , an−1, an), C(2, a2, . . . , an−1, an+a1−2)) ≤ a1+a2+· · ·+an−1+an+1.

Then we apply the arguments in Case A above to show that

sd(C(2, a2, . . . , an−1, an + a1 − 2),⃝) = 2 + a2 + · · ·+ an−1 + (an + a1 − 2)

= a1 + a2 + · · ·+ an−1 + an.

These show that

sd(C(a1, a2, . . . , an−1, an),⃝) ≤ a1 + a2 + · · ·+ an−1 + an + 1.

These complete the proof of Theorem 3.1. □
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3.3. Deformation of type ξp. For the statement of the second result, we introduce
a new deformation of spherical curves. Let p be a positive odd integer. We say that
a spherical curve P ′ is obtained from a spherical curve P by a deformation of type
ξp if P

′ is obtained by replacing the part of P contained in a disk D as in Figure 27.

Figure 27. Deformation of type ξp

We note that the deformation of type ξp is exactly the deformation denoted T (2k−
1) with 2k − 1 = p, in [6]. In Lemma 2 of [6], it is shown that the deformation of
type ξp is realized by a sequence consisting of deformations of type RI or type RIII
(up to ambient isotopy). In fact, Figure 29 depicts the sequence of deformations.
Here we remark the next fact concerning the numbers of the double points of the
spherical curves in the sequence. Let us consider the sequence of the spherical curves
in Figure 29. Then we have:

Fact 3.1. The maximal number of double points of the spherical curves that are
contained in the disk D is p+ (p− 1)/2.

Proof. We prove the fact by the induction on p. Suppose that p = 3. In this case, the
sequence is as in Figure 28. It is directly obseved from Figure 28 that the maximal
number of the double points is 4(= 3 + (3− 1)/2).

Figure 28. Deformation of type ξ3

Suppose that the fact holds for p = 2l+1. Then we consider the case of p = 2l+3
(Figure 29). We first apply one deformation of type α+, and 2l + 1 deformations of
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type RIII as in (a), (b), (c) of Figure 29 to obtain the spherical curve P2 depicted
in Figure 29 (c). Here we note that the number of the double points is raised by 1.
Then we apply a deformation of type ξ2l+1 within the disk D′ depicted in Figure 29
(c) to obtain the spherical curve P3 in Figure 29 (d). Here we note that the number
of the double points is raised by l within D′, hence the number of the double points
is raised by l + 1 within D. Then we apply deformations of type RIII 2l times to
obtain the spherical curve P4 in Figure 29 (e). Then we apply the deformation of
type α− by using the 1-gon with a crack depicted in Figure 29 (e) to obtain the
spherical curve P5 (=P ′) in Figure 29 (f). These show that the maximal number of
the double points contained in D is (2l+ 3) + (l+ 1)(= (2l+ 3) + {(2l+ 3)− 1}/2).

Figure 29. Deformation of type ξ2l+3

These complete the proof of Fact 3.1. □

For the statement of the next proposition, we prepare some notations. We consider
the 12 types of curves in a disk depicted in Figure 30.
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Figure 30. The 12 types of curves in a disk

Proposition 3.1. Let P be a spherical curve. Suppose that there is a disk D in
S2 such that P ∩ D is as in Figure 30 A5. Suppose that a spherical curve P ′ is
obtained from P by a sequence of deformations each of which is either of type RIII or
type α performed within D under the constraint such that the number of the double
points in D of each of the spherical curves is at most 6. Then P ′ ∩ D is one of
the configulations in Figure 30 up to the 4-fold symmetry generated by the vartical
reflection and the horizonal reflection of the disk.

Proof. Let us start with the spherical curve A5. Since no 1-gon, or triangle is observed
there, the possible deformations are all of type α+, and it is easy to see that they are
depicted by the two 2-gons with two dotted arcs named 1 and 2 in Figure 31 A5(a) up
to the 4-fold symmetry. Note that we obtain the spherical curve whose restriction in
D is A6(1) in Figure 30 if we perform the deformation along the dotted arc 1, and we
obtain the spherical curve whose restriction in D is A6(2) in Figure 30 if we perform
the deformation along the dotted arc 2. See Figure 31 A5(a). We shall describe
this fact by using the diagram as in Figure 31 A5(b). We make similar analyses and
diagrams by starting with the configulations A6(1), A6(2), B5, B6(1), B6(2), C5, C6(1),
C6(2), C6(3), C6(4), C6(5) to obtain Figure 31 A6(1)(a)∼ Figure 31 C6(5)(b).
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Figure 31. Analysis and diagrams

Then we take the graph whose edges are labeled by RIII and α in Figure 32. We
note that each vertex corresponds to the configulation in Figure 30 with the same
label. We further note that for each vertex X, the subgraph consisting of the edges
adjacent to X, and the other vertices of the edges is exactly X(b) in Figure 31. This
fact clearly implies Proposition 3.1.
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Figure 32. The graph whose edges are labeled

□

As an immediate consequence of Proposition 3.1, we obtain the next corollary.

Corollary 3.1. The deformation of type ξ5 within a disk D can not be realized by a
sequence of deformations each of which is either of type RIII or type α if we pose the
following conditions.

(1) Every deformation is performed within D, and
(2) the numbers of the double points of the spherical curves within D are at

most 6.

3.4. Pretzel spherical curves. For an m-tuple of positive integers a1, a2, . . . , am
(m ≥ 3), let P (a1, a2, . . . , am) be a union of curves depicted in Figure 33.

Figure 33. P (a1, a2, . . . , am)

Note that if either one of the following 2 conditions is satisfied, then P (a1, a2, . . . , am)
is a spherical curve.

(1) Exactly one of a1, a2, . . . , am is an even number.
(2) m is an odd number, and every ai is an odd number.
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We call such spherical curve P (a1, a2, . . . , am) a pretzel spherical curve of type (a1, a2, . . . , am).

In [6], it is shown that every pretzel spherical curve is RI, RIII-equivalent to a
trivial spherical curve. In this paper, we study the stable double point numbers
between certain pretzel spherical curves and trivial spherical curves.

For positive odd integers m(≥ 3) and p, P (m; p) denotes the pretzel spherical
curve with m boxes B1, . . . , Bm, where each Bi contains p double points. Note that
d([P (m; p)]) = mp. Suppose that p ≥ 3. By applying deformations of type ξp
m times, we see that P (m; p) is RI, RIII-equivalent to the 2-bridge spherical curve
C(mp). Further by Fact 3.1, we see that

sd(P (m; p), C(mp)) ≤ mp+ (p− 1)/2.

On the other hand, we note that

sd(C(mp),⃝) ≤ mp+ 1

by Theorem 3.1. We note that these arguments have established the following propo-
sition.

Proposition 3.2. Let P (m; p) be as above. Then

sd(P (m; p),⃝) ≤ d([P (m; p)]) + (p− 1)/2.

We have the impression that the inequality in Proposition 3.2 can be replaced with
the equality. That is, it seems that the following equality holds.

sd(P (m; p),⃝) = d([P (m; p)]) + (p− 1)/2.

The next theorem shows that the equality actually holds for the case of p = 5.

Theorem 3.2. Let P (m; p) be as above. Then for each odd number m(≥ 5), we
have:

sd(P (m; 5),⃝) = d([P (m; 5)]) + 2.

Proof. We will prove Theorem 3.2 for the case of m = 5. The reader will see that
arguments work for the cases m > 5.

Let B1, B2, B3, B4, B5 be the boxes in S2 as in the definition of P (5, 5, 5, 5, 5) =
P (5; 5). By Proposition 3.2, we see that sd(P (5; 5),⃝) ≤ 27. Hence it is enough
to show that sd(P (5; 5),⃝) > 26 for a proof of Theorem 3.2. Then assume for a
contradiction, that sd(P (5; 5),⃝) ≤ 26, and let

P (5; 5) = P0
op1−−→ P1

op2−−→ · · · opn−−→ Pn = ⃝.

be a sequence realizing the inequality, which has the shortest length among all such
sequences. Note that each opi is either a deformation of type RI or a deformation of
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type RIII. Let B = B1 ∪B2 ∪B3 ∪B4 ∪B5.
Let {opi1 , opi2 , . . . , opis|i1 < i2 < · · · < is} be the subset of the deformations in the

sequence

P0
op1−−→ P1

op2−−→ · · · opn−−→ Pn

consisting of deformations of type RIII. (Hence if it < j < it+1 for some t, then
opj is a deformation of type RI.) Then by Proposition 2.1, we may suppose that
reduced(Pit+1) (t = 0, 1, 2, . . . , s− 1) is obtained from reduced(Pit) by a deformaton
of type RIII, type α or type β, where we let Pi0 = P0. We have obtained

P0 = reduced(Pi0)
õp1−−→ reduced(Pi1)

õp2−−→ · · · õps−−→ reduced(Pis) = ⃝
where each õpk (k = 1, 2, . . . , s) is a deformation of type RIII, type α or type β. Here
we note that d([Pit ]) = the number of double points of reduced(Pit) (Remark 2.1).

Then by putting P̃t = reduced(Pit), we have pbtained a sequence

P̃0(= P0)
õp1−−→ P̃1

õp2−−→ · · · õps−−→ P̃s = ⃝
such that each õpk (k = 1, 2, . . . , s) is a deformation of type RIII, type α or type β,

and that the number of double points of P̃t ia at most 26.

Claim 3.2. õp1 is a deformation of type α+ performed within B.

Proof of Claim 3.2. Since each region of P̃0(= P0 = P (5; 5)) is not a triangle, õp1 is

not of type RIII, α− or β−. Since the number of double points of P̃1 is at most 26,

õp1 is not of type β+. Hence õp1 is of type α+. Since every 2-gon region of P̃0 is
contained in B, õp1 is performed within B. □

Let õpl be the first deformation which is not performed within B. (Hence õp1, . . . , õpl−1

is performed within B.)

Claim 3.3. Each of õp1, . . . , õpl−1 is not a deformations of type β.

Proof of Claim 3.3. Suppose for a contradicton that there exists k(≤ l−1) such that
õpk is of type β. By retaking k, if necessary, we may suppose õp1, . . . , õpk−1 is not
of type β (hence, each õpj (j = 1, . . . , k − 1) is of type RIII or type α). Then by

Proposition 3.1, we see that each P̃k−1∩Bi (i = 1, 2, 3, 4, 5) is one of the configulations

in Figure 30. This shows that the number of the double points of P̃k−1 is at least 25.

If õpk is β+, then this implies that the number of double points of P̃k is at least 28,
a contradiction. On the other hand, by Figure 30 it is easy to see that there is no

β-realm in P̃k−1, hence õpk cannot be of type β−. □

By Claim 3.3 and Proposition 3.1, we see that each P̃l−1 ∩ Bi (i = 1, 2, 3, 4, 5) is
one of the configulations in Figure 30. By Proposition 2.2, we may suppose that
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P̃l−1 \ B = P̃0 \ B(= P (5; 5) \ B). We take the points pN , pS, p1, p2, p3, p4, p5 as in
Figure 34.

Figure 34. The points pN , pS, p1, p2, p3, p4, p5

Then let RN , RS, R1, R2, R3, R4, R5 be the regions of P̃l−1 containing the points pN ,

pS, p1, p2, p3, p4, p5 respectively. Since each P̃l−1 is RI-minimal, and the region(s)
relevant to õpl is not contained in B, we see that some of the 7 regions is either a
2-gon or a triangle.

Case A: Either RN or RS is a 2-gon or a triangle.
Without loss of generality, we may suppose that RN is a 2-gon or a triangle. Since

m = 5, we see that there exists s (1 ≤ s ≤ 5) such that Bs ∩RN does not contain a

corner of RN , and this shows that there is an isolated arc in P̃l−1∩Bs. See Figure 35.
But this contradicts Proposition 3.1.

Figure 35. RN is a 2-gon or triangle

Case B: Either one of R1, . . . , R5 is a 2-gon or a triangle.
Without loss of generality, we may suppose that R1 is either a 2-gon or a triangle.

Case B-1: R1 is a 2-gon.

In this case, since P̃l−1 ∩ (B1 ∪ B2) does not contain an isolated arc, we see that
each of R1 ∩B1 and R1 ∩B2 contains exactly one corner of R1. See Figure 36. Then
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by Proposition 3.1, we see that the configulations of P̃l−1 ∩ B1 and P̃l−1 ∩ B2 are of

type C6(5) in Figure 30. Recall that each of the configulations of P̃l−1∩Bi (1 ≤ i ≤ 5)
is one of the types of Figure 30, and this shows that the number of the double points

of P̃l−1 ∩ Bi is greater than or equal to 5, particularly, we note that the number of
the double points of type C6(5) configulation is 6. These imply that the number of

the double points of P̃l−1 is greater than 26, a contradiction.

Figure 36. In case that R1 is a 2-gon

Case B-2: R1 is a triangle.

Since P̃k−1 ∩ (B1 ∪B2) does not contain an isolated arc, we may suppose, without
loss of generality, that R1 ∩B1 contains one corner of R1, and R1 ∩B2 contains two
corners of R1. See Figure 37.

Figure 37. In case that R1 is a triangle

Then by Proposition 3.1, we see that the cofigulation of P̃l−1 ∩ B1 is of type C6(5),

and the configulation of P̃l−1 ∩ B2 is of type B6(2), C6(3), C6(4) or C6(5) in Figure 30.
Note that all of the numbers of the double points of the configulations of type B6(2),

C6(3), C6(4), C6(5) are 6, and this shows that the number of the double points of P̃l−1

is greater than 26, a contradiction.
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These complete the proof of Theorem 3.2 for the case of m = 5. It is easy to see
that the above arguments work for general m. □
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