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Abstract

Feller property of some diffusion processes and the time changed
processes is investigated. Diffusion processes treated here are skew
product of one dimensional generalized diffusion processes and the
spherical Brownian motion, and the time changed processes are given
by additive functional associated with some underlying measure. Con-
crete expressions of the Dirichlet forms corresponding to time changed
processes are also obtained, which may be of non-local type caused by
degeneracy of the underlying measures.

1 Introduction

Let s be a continuous strictly increasing function on an open interval I =
(l1, l2), and m be a right continuous nondecreasing function on I, where
−∞ ≤ l1 < l2 ≤ ∞. We denote by R = [Rt, P

R
r ] a one dimensional general-

ized diffusion process (ODGDP for brief) on I with scale function s, speed
measure m and no killing measure. We also denote by Θ = [Θt, P

Θ
θ ] the

spherical Brownian motion on Sd−1 ⊂ R
d with generator 1

2
Δ, Δ being the

spherical Laplacian on Sd−1. In this article we study Feller property of the
skew product X = [Xt = (Rt, Θf(t)), P

X
(r,θ) = PR

r ⊗ PΘ
θ , (r, θ) ∈ I × Sd−1]

with respect to a positive continuous additive functional (PCAF for brief)
f(t) of the ODGDP R. We also study Feller property of time changed pro-
cesses of the skew product X. In [10] Ogura et al. were concerned with the
skew product of a one dimensional diffusion process on R

1 and a d − 1 di-
mensional diffusion process on R

d−1 with respect to a PCAF, and its time
changed process. They showed Feller property of these processes by studying
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some properties of the corresponding PCAF. We observe behavior of sample
paths of R near the end points li, i = 1, 2 to show Feller property of the
skew product X. We present Dirichlet forms of the skew product X and time
changed processes, which are limit processes appeared in some limit theo-
rem discussed by the first author. Our results ensure that Feller property is
preserved in sequences of stochastic processes and their limit processes dis-
cussed by her. Dirichlet forms corresponding to time changed processes may
be non-local type. Namely, they are expressed by diffusion term, jump term
and killing term. Our results show that Markov processes corresponding to
such non-local type Dirichlet forms satisfy Feller property.

In Section 2 we present Dirichlet forms corresponding to the ODGDP R,
the spherical Brownian motion Θ, and the skew product X by employing the
results of [4] and [9]. In Section 3 we state Feller property of the skew product
X. Section 4 is devoted to time changed processes of the skew product. We
show their Feller property. In Section 5 we present Dirichlet form of the time
changed process and give some typical examples.

2 Preliminaries

2.1 ODGDP

Let s, m, I, etc. be those given in the preceding section. We denote by ds
and dm the measures induced by s and m, respectively. We assume that we
assume that supp[m], the support of dm, coincides with I. For a function
f on I, we simply write f(l1) [resp. f(l2)] in place of f(l1+) [resp. f(l2−)]
provided f(l1+) [resp. f(l2−)] exists. Let D(Gs,m) be the space of all bounded
continuous functions u on I satisfying the following two conditions.

(i) There exist a function f on I and two constants A1, A2 such that

u(x) = A1 + A2{s(x) − s(c)} +

∫
(c,x]

{s(x) − s(y)}f(y) dm(y), x ∈ I. (2.1)

(ii) For each i = 1, 2, u(li) = 0 if |m(li)| + |s(li)| < ∞.

Throughout this paper we denote by c an arbitrarily fixed point of I. The
operator Gs,m is defined by the mapping from u ∈ D(Gs,m) to f appeared in
(2.1). The operator Gs,m is called the one-dimensional generalized diffusion
operator (ODGDO for brief) with (s, m), and s and m are called the scale
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function and the speed measure, respectively. We set

Jμ,ν(li) =

∫
(c,li)

dμ(x)

∫
(c,x]

dν(y),

for Borel measures μ and ν on I. Following [3], we call the end point li to be

(s, m)-regular if Js,m(li) < ∞ and Jm,s(li) < ∞,
(s, m)-exit if Js,m(li) < ∞ and Jm,s(li) = ∞,
(s, m)-entrance if Js,m(li) = ∞ and Jm,s(li) < ∞,
(s, m)-natural if Js,m(li) = ∞ and Jm,s(li) = ∞.

Recall that

if li is (s, m)-regular, |m(li)| < ∞ and |s(li)| < ∞,
if li is (s, m)-exit, |m(li)| = ∞ and |s(li)| < ∞,
if li is (s, m)-entrance, |m(li)| < ∞ and |s(li)| = ∞,
if li is (s, m)-natural, |m(li)| = ∞ or |s(li)| = ∞.

Therefore the above condition (ii) means that the absorbing boundary con-
dition is posed at li if it is (s, m)-regular. It is known that there exists a
strong Markov process R = [Rt, PR

r ] with the generator Gs,m, which is called
an ODGDP on I (see [6], [11]).

We denote by pR
t the semigroup of the ODGDP R, that is,

pR
t f(r) = EPR

r [f(Rt)] =

∫
I

pR(t, r, ξ)f(ξ) dm(ξ), t > 0, r ∈ I, (2.2)

for f ∈ Cb(I), where Cb(A) is the set of all bounded continuous functions
on a set A, EP stands for the expectation with respect to the probability
measure P , and pR(t, r, ξ) denotes the transition probability density of R
with respect to dm. We note that pR

t f ∈ Cb(I) and there exist the following
limits for t > 0 (see [6], [8]).

lim
r→li

pR
t f(r) = 0 if li is (s, m)-regular or exit. (2.3)

lim
r→li

pR
t f(r) ∈ R

if li is (s, m)-entrance and there exists the limit f(li). (2.4)

lim
r→li

pR
t f(r) = 0
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if li is (s, m)-natural and there exists the limit f(li) = 0. (2.5)

We consider the following symmetric bilinear form (ER,FR).

ER(u, v) =

∫
I

du

ds

dv

ds
ds, (2.6)

FR = {u ∈ L2(I, m) : u is absolutely continuous on I with

respect to ds and ER(u, u) < ∞}.
We set CR = {u ◦ s : u ∈ C1

0 (J)}, where J = s(I) and C1
0(J) is the set of

all continuously differentiable functions on J with compact support. Then
(ER,FR) is a regular, strongly local, irreducible Dirichlet form on L2(I, m)
possessing CR as its core and corresponding to the ODGDP R = [Rt, PR

r ]
(see [1], [5]). In the following we write sR and mR in place of s and m,
respectively.

Following [5], we call ER to be conservative if pR
t 1 = 1, t > 0. Since

pR
t 1(r) = PR

r (t < σR
l1
∧ σR

l2
), we see that pR

t 1 = 1 if and only if

both of li, i = 1, 2, are (sR, mR)-entrance or natural, (2.7)

where σR
a stands for the first hitting time to a point a for the ODGDP R,

that is, σR
a = inf{t > 0 : Rt = a}, and a ∧ b = min{a, b}. Finally we

summarize hitting probability densities. For an open interval E = (a, b) ⊂ I,
let pR

E(t, ξ, η) be the ODGDP on E with the scale function sR and the speed
measure mR. Note that a [resp. b] is regular and absorbing if l1 < a [resp. b <
l2]. Let denote by DsR(r) the right derivative with respect to dsR(r). It is
known that there exist the following limits (see [8]).

hR
E(t, r, a) := lim

ξ↓a
DsR(ξ)p

R
E(t, r, ξ) ≥ 0,

hR
E(t, r, b) := − lim

ξ↑b
DsR(ξ)p

R
E(t, r, ξ) ≥ 0,

for t > 0 and a < r < b. Then it holds true that

PR
r (σR

a < t, σR
a < σR

b ) =

∫ t

0

hR
E(u, r, a) du, (2.8)

PR
r (σR

b < t, σR
b < σR

a ) =

∫ t

0

hR
E(u, r, b) du, (2.9)

for t > 0 and a < r < b.
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2.2 Spherical Brownian motion

Next we consider the spherical Brownian motion BM(Sd) on Sd ⊂ R
d+1 with

generator 1
2
Δ, where Δ is the spherical Laplacian on Sd. Itô and McKean [6]

showed that the spherical Brownian motion is described as the skew product
of the Legendre process LEG(d) = {ϕt} with the generator

1

2
(sinϕ)1−d ∂

∂ϕ
(sin ϕ)d−1 ∂

∂ϕ
, 0 < ϕ < π, (2.10)

and an independent spherical Brownian motion BM(Sd−1) with respect to the
PCAF

∫ t

0
(sinϕs)

−2 ds. Fukushima and Oshima [4] determined the Dirichlet

form corresponding to the skew product (X
(1)
t , X

(2)
At

), where {X(i)
t }, i = 1, 2,

are independent conservative Markov processes on state space X(i), and At is
a PCAF of {X(1)

t }. They presented the Dirichlet form corresponding to the
spherical Brownian motion BM(Sd) as an application of their results. More

precisely, let X(1) = (0, π), X
(2)
1 = T (= R

1/[0, 2π]) the torus, and X
(2)
d =

X(1) × X
(2)
d−1 (d ≥ 2). In the following X

(2)
d is identified with Sd (⊂ R

d+1).

Then dm
(1)
d (ϕ) = (sin ϕ)d dϕ (d ≥ 1) are the measures on X(1), dm

(2)
1 (θ) = dθ

is the measure on X
(2)
1 , and m

(2)
d = m

(1)
d−1 ⊗ m

(2)
d−1 (d ≥ 2) are measures on

X
(2)
d . We consider the following symmetric bilinear forms.

E1(u, v) =
1

2

∫
X

(2)
1

du

dθ

du

dθ
dθ, u, v ∈ C∞(X

(2)
1 ), (2.11)

Ed(f, g)

=

∫
X

(2)
d−1

Ed−1,(1) (f(·, θ), g(·, θ)) dm
(2)
d−1(θ)

+

∫
X(1)

Ed−1 (f(ϕ, ·), g(ϕ, ·)) dμd−1(ϕ), f, g ∈ C∞
0 (X

(2)
d ), d ≥ 2, (2.12)

where C∞(A) [resp. C∞
0 (A)] stands for the set of all infinitely continuously

differentiable functions on a set A [resp. with compact support], dμd−1(ϕ) =

(sinϕ)−2dm
(1)
d−1(ϕ) = (sinϕ)d−3dϕ and

Ed−1,(1)(u, v) =
1

2

∫
X(1)

du

dϕ

du

dϕ
(sinϕ)d−1 dϕ, u, v ∈ C∞

0 (X(1)). (2.13)

We note that
(E1, C∞(X

(2)
1 )

)
and

(Ed−1,(1), C∞
0 (X(1))

)
are closable on L2(X

(2)
1 , m

(2)
1 )

and L2(X(1), m
(1)
d−1), respectively. Their closures are regular Dirichlet forms,
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which are denoted by (E1,F1) and
(Ed−1,(1),Fd−1,(1)

)
, respectively. The for-

mer is corresponding to the circular Brownian motion BM(S1) and the latter
is corresponding to LEG(d) with generator (2.10). By virtue of [4] and [6],(
Ed, C∞

0 (X
(2)
d )

)
is closable on L2(X

(2)
d , m

(2)
d ) and the closure

(Ed,Fd
)

is a

regular Dirichlet form corresponding to BM(Sd). In the following we denote
by Θ = [Θt, P

Θ
θ ] and

(EΘ,FΘ
)

the spherical Brownian motion BM(Sd−1) and
the corresponding Dirichlet form

(Ed−1,Fd−1
)
, respectively.

We denote by pΘ
t the semigroup of the spherical Brownian motion Θ, that

is,

pΘ
t f(θ) = EPΘ

θ [f(Θt)]

=

∫
Sd−1

pΘ(t, θ, ϕ)f(ϕ) dm
(2)
d−1(ϕ), t > 0, θ ∈ Sd−1, (2.14)

for f ∈ Cb(S
d−1), where pΘ(t, θ, ϕ) stands for the transition probability den-

sity of Θ. It is known that pΘ(t, θ, ϕ) is represented by spherical harmonics
Sl

n, that is,

pΘ(t, θ, ϕ) =

∞∑
n=0

e−γnt

κ(n)∑
l=1

Sl
n(θ)Sl

n(ϕ), (2.15)

where γn = 1
2
n(n + d− 2), κ(n) = (2n+ d− 2) · (n + d− 3)!/n! (d− 2)! which

is the number of spherical harmonics of weight n, 1
2
ΔSl

n = −γnSl
n, and∫

Sd−1

Sl
nS

k
n dm

(2)
d−1 =

{
1, l = k,
0, l 
= k,

(see [2], [6]). We set Ad−1 =
∫

Sd−1 dm
(2)
d−1 (the total area of the spherical

surface Sd−1), so that S1
0 = A

−1/2
d−1 . Note that κ(0) = 1. When d = 2, (2.15)

is reduced to

pΘ(t, θ, ϕ)

=
1

2π
+

1

π

∞∑
n=1

e−n2t/2

{
cosnθ cos nϕ + sinnθ sinnϕ

}

=
1

2π
+

1

π

∞∑
n=1

e−n2t/2 cosn(θ − ϕ). (2.16)
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2.3 Skew product

Now we turn to a skew product of R = [Rt, P
R
r ] and Θ = [Θt, P

Θ
θ ]. It is known

that the ODGDP R has the local time lR(t, r) which is continuous with re-
spect to (t, r) ∈ [0,∞)×I and satisfies

∫ t

0
1A(Ru) du =

∫
A

lR(t, r) dmR(r), t >
0, for every measurable set A ⊂ I (see [6]), where 1A is the indicator for a
set A. Let ν be a Radon measure on I and assume that supp[ν], the support
of ν, coincides with I. We set

f(t) =

∫
I

lR(t, r) dν(r). (2.17)

Since supp[ν] = I, we see that

PR
r (f(t) > 0, t > 0) = 1, r ∈ I. (2.18)

We assume (2.7). Let X = [Xt = (Rt, Θf(t)), P
X
(r,θ) = PR

r ⊗ PΘ
θ , (r, θ) ∈

I ×Sd−1] be the skew product of the ODGDP R and the spherical Brownian
motion Θ with respect to the PCAF f(t), and set

EX(f, g) =

∫
Sd−1

ER(f(·, θ), g(·, θ)) dm
(2)
d−1(θ)

+

∫
I

EΘ(f(r, ·), g(r, ·)) dν(r), (2.19)

for f, g ∈ CX, where CX = {f(sR(r), θ) : f ∈ C∞
0 (J × Sd−1)} and J = sR(I).

Then by means of Theorem 1.1 of [4] and (2.18), we immediately obtain the
following result. So we omit the proof.

Proposition 2.1 We assume (2.7). Then the form (EX, CX) is closable on

L2(I × Sd−1, mR ⊗ m
(2)
d−1). The closure (EX,FX) is a regular Dirichlet form

and it is corresponding to the skew product X.

Let denote by pX
t the semigroup of the skew product X, that is,

pX
t f(r, θ) = EPR

r ⊗PΘ
θ [f(Rt, Θf(t))], t > 0, (r, θ) ∈ I × Sd−1, (2.20)

for f ∈ Cb(I × Sd−1). By virtue of (2.15) we obtain the following

pX
t f(r, θ) =

∫
Sd−1

EPR
r

[
f(Rt, ϕ) pΘ(f(t), θ, ϕ)

]
dm

(2)
d−1(ϕ)
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=
∞∑

n=0

κ(n)∑
l=1

Sl
n(θ)

∫
Sd−1

Sl
n(ϕ)EPR

r
[
f(Rt, ϕ)e−γnf(t)

]
dm

(2)
d−1(ϕ).

(2.21)

3 Feller property of the skew product

Let X = [Xt = (Rt, Θf(t)), P
X
(r,θ) = PR

r ⊗ PΘ
θ , (r, θ) ∈ I × Sd−1] be the skew

product of the ODGDP R and the spherical Brownian motion Θ with respect
to the PCAF f(t) defined in the preceding section. We go forward with our
argument under the assumption (2.7). We show Feller property of the skew
product X. Since EPR

r
[
f(Rt, η)e−γnf(t)

]
is continuous in r ∈ I (see [6]), we

immediately obtain the following result by means of (2.21), so we omit the
proof.

Proposition 3.1 Let f ∈ Cb(I×Sd−1) and t > 0. Then pX
t f ∈ Cb(I×Sd−1).

Next we observe the behavior of pX
t f(r, θ) as r → li.

Theorem 3.2 Let i = 1, 2, t > 0 and f ∈ Cb(I × Sd−1).
(i) Assume that the end point li is (sR, mR)-entrance, and the measure ν

satisfies ∣∣∣∣
∫

(c,li)

sR(r) dν(r)

∣∣∣∣ = ∞. (3.1)

Further assume that there exists the limit limr→li f(r, θ) for any θ ∈ Sd−1.
Then there exist the following limits.

E
PR

li [f(Rt, θ)] := lim
r→li

EPR
r [f(Rt, θ)], θ ∈ Sd−1. (3.2)

lim
r→li

pX
t f(r, θ) =

1

Ad−1

∫
Sd−1

EPR
li [f(Rt, ϕ)] dm

(2)
d−1(ϕ), θ ∈ Sd−1. (3.3)

Note that the limit (3.3) is independent of θ.
(ii) Assume that the end point li is (sR, mR)-natural and f satisfies

limr→li supθ∈Sd−1 |f(r, θ)| = 0. Then

lim
r→li

pX
t f(r, θ) = 0, θ ∈ Sd−1. (3.4)
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Proof. (i) We only show the statement for i = 1. Assume that the end
point l1 is (sR, mR)-entrance, and there exists the limit limr→l1 f(r, θ) for any
θ ∈ Sd−1. Then, by means of (2.4), there exists the limit

EPR
l1 [f(Rt, θ)] := lim

r→l1
EPR

r [f(Rt, θ)], θ ∈ Sd−1.

We claim that, if ν satisfies (3.1),

lim
r→l1

EPR
r

[
f(Rt, θ) e−Cf(t)

]
= 0, θ ∈ Sd−1, (3.5)

for any positive constant C. This fact is obtained by Itô and McKean [6].
Their idea is as follows. Since the support of mR coincides with I, we can
employ the argument in [6] and find that the time changed process Q =
[Rf−1(t), P

R
r ] is an ODGDP with the scale function sR and the speed measure

ν, where f−1 is the inverse of f . Since the end point l1 is (sR, mR)-entrance,
we see sR(l1) = −∞. Combining this with (3.1), we find that the end point
l1 is (sR, ν)-natural. Since l1 is (sR, mR)-entrance, we have

lim sup
a→l1

lim sup
r→l1

PR
r (f(t) = ∞, t < σR

a ) ≤ lim sup
a→l1

lim sup
r→l1

PR
r (t < σR

a ) = 0.

(3.6)

Since l1 is (sR, ν)-natural and f(σR
a ) is the first hitting time to the point a

for the ODGDP Q (see [6]), we obtain

lim
r→l1

EPR
r

[
e−f (σR

a )
]

= 0, a ∈ I.

Therefore

lim inf
a→l1

lim inf
r→l1

PR
r

(
f(t) = ∞, t > σR

a

)
≥ lim inf

a→l1
lim inf

r→l1
PR

r

(
f(σR

a ) = ∞, t > σR
a

)
= lim inf

a→l1
lim inf

r→l1
PR

r

(
t > σR

a

)
= 1,

where we used the fact that l1 is (sR, mR)-entrance. Thus we obtain that

lim
r→l1

PR
r (f(t) = ∞) = 1, t > 0,
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which implies (3.5). By using (2.21) and (3.5), we arrive at

lim
r→l1

pX
t f(r, θ) = S1

0(θ)

∫
Sd−1

S1
0(ϕ)EPR

l1 [f(Rt, ϕ)] dm
(2)
d−1(ϕ)

=
1

Ad−1

∫
Sd−1

EPR
l1 [f(Rt, ϕ)] dm

(2)
d−1(ϕ).

(ii) Assume that the end point li is (sR, mR)-natural and
limr→li supθ∈Sd−1 |f(r, θ)| = 0. We set h(r) = supθ∈Sd−1 |f(r, θ)|. Then by
means of (2.5) and (2.20),

lim sup
r→li

sup
θ∈Sd−1

∣∣pX
t f(r, θ)

∣∣ ≤ lim sup
r→li

EPR
r [h(Rt)] = lim

r→li
pR

t h(r) = 0.

Thus we obtain (3.4). �

4 Feller property of time changed processes

Let X = [Xt = (Rt, Θf(t)), P
X
(r,θ) = PR

r ⊗ PΘ
θ , (r, θ) ∈ I × Sd−1] be the skew

product of the ODGDP R and the spherical Brownian motion Θ with respect
to the PCAF f(t) defined in Section 2. In this section we consider a time
changed process of X and show its Feller property under the assumption
(2.7).

Let μ be a non-trivial Radon measure on I and set

g(t) =

∫
I

lR(t, r) dμ(r), t > 0. (4.1)

We denote by τ(t) the right continuous inverse of g(t). We consider the time
changed process Y = [Yt = (Rτ(t), θf(τ(t))), P

Y
(r,θ) = PR

r ⊗PΘ
θ , (r, θ) ∈ I×Sd−1].

Let denote by pY
t the semigroup of Y, that is,

pY
t f(r, θ) = EPR

r ⊗PΘ
θ [f(Rτ(t), Θf(τ(t)))], t > 0, (r, θ) ∈ I × Sd−1, (4.2)

for f ∈ Cb(I × Sd−1). By virtue of (2.15) we obtain the following

pY
t f(r, θ)

=

∫
Sd−1

EPR
r

[
f(Rτ(t), ϕ) pΘ(f(τ(t)), θ, ϕ)

]
dm

(2)
d−1(ϕ)
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=
∞∑

n=0

κ(n)∑
l=1

Sl
n(θ)

∫
Sd−1

Sl
n(ϕ)EPR

r
[
f(Rτ(t), ϕ)e−γnf(τ(t))

]
dm

(2)
d−1(ϕ). (4.3)

Note that the time changed process U = [Rτ(t), P
R
r ] is an ODGDP with

the scale function sR and the speed measure μ. We set Λ = supp[μ] and
Γ = Λ×Sd−1. Also note that the time changed process Y is essentially defined
on Γ. Since EPR

r
[
f(Rτ(t), ϕ)e−γnf(τ(t))

]
is continuous in r ∈ Λ (see [6]), the

following result is obvious by means of (4.3). So we omit the proof.

Proposition 4.1 Let f ∈ Cb(Γ) and t > 0. Then pY
t f ∈ Cb(Γ).

We observe the behavior of pY
t f(r, θ) as r (∈ Λ) → l1 [resp. l2] when

l1 = inf Λ [resp. l2 = supΛ].

Theorem 4.2 Let f ∈ Cb(Γ) and t > 0. The following properties hold true
for the end point li satisfying l1 = inf Λ or l2 = sup Λ.

(i) If the end point li is (sR, μ)-regular or exit, then

lim
r (∈Λ)→li

pY
t f(r, θ) = 0, θ ∈ Sd−1. (4.4)

(ii) Assume that the end point li is (sR, μ)-entrance, and the measure ν
satisfies (3.1). Further assume that there exists the limit limr (∈Λ)→li f(r, θ)
for any θ ∈ Sd−1. Then there exist the following limits.

E
PR

li [f(Rτ(t), θ)] := lim
r (∈Λ)→li

EPR
r [f(Rτ(t), θ)], θ ∈ Sd−1. (4.5)

lim
r (∈Λ)→li

pY
t f(r, θ) =

1

Ad−1

∫
Sd−1

EPR
li [f(Rτ(t), ϕ)] dm

(2)
d−1(ϕ), θ ∈ Sd−1.

(4.6)

Note that the limit (4.6) is independent of θ.
(iii) Assume that the end point li is (sR, μ)-natural and f satisfies

limr (∈Λ)→li supθ∈Sd−1 |f(r, θ)| = 0. Then (4.4) holds true.

Proof. We may assume that l1 = inf Λ. We show the statements for l1.
(i) Assume that the end point l1 is (sR, μ)-regular or exit. By virtue of

(2.3) for U we get

lim sup
r (∈Λ)→l1

∣∣∣EPR
r

[
f(Rτ(t), θ) e−f (τ(t))

]∣∣∣ ≤ lim sup
r (∈Λ)→l1

EPR
r

[∣∣f(Rτ(t), θ)
∣∣] = 0, θ ∈ Sd−1.
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Combining this with the dominated convergence theorem and (4.3), we obtain
the statement (i).

(ii) Assume that the end point l1 is (sR, μ)-entrance, and there exists the
limit limr (∈Λ)→l1 f(r, θ) for any θ ∈ Sd−1. Then, by means of (2.4) for the
ODGDP U, there exists the limit

EPR
l1 [f(Rτ(t), θ)] := lim

r (∈Λ)→l1
EPR

r [f(Rτ(t), θ)], θ ∈ Sd−1.

Note that limr (∈Λ)→l1 PR
r (τ(t) > 0) = 1. Therefore, by the same argument

as for (3.5), we obtain

lim
r (∈Λ)→l1

EPR
r

[
f(Rτ(t), θ) e−Cf(τ(t))

]
= 0, θ ∈ Sd−1, (4.7)

for any positive constant C. Combining this with (4.3), we find

lim
r (∈Λ)→l1

pY
t f(r, θ) = S1

0(θ)

∫
Sd−1

S1
0(ϕ)EPR

l1

[
f(Rτ(t), ϕ)

]
dm

(2)
d−1(ϕ)

=
1

Ad−1

∫
Sd−1

EPR
l1

[
f(Rτ(t), ϕ)

]
dm

(2)
d−1(ϕ).

(iii) Assume that the end point l1 is (sR, μ)-natural and
limr (∈Λ)→l1 supθ∈Sd−1 |f(r, θ)| = 0. We set h(r) = supθ∈Sd−1 |f(r, θ)|. Then by
means of (2.5) for the ODGDP U and (4.2),

lim sup
r (∈Λ)→l1

sup
θ∈Sd−1

∣∣pY
t f(r, θ)

∣∣ ≤ lim sup
r (∈Λ)→l1

EPR
r [h(Rτ(t))] = 0.

Thus we obtain (4.4). �

5 Dirichlet form of the time changed process

In this section, we derive the Dirichlet form (EY,FY) of the time changed
process Y defined in the preceding section. Y is a time changed process of X.
X is the skew product of R and Θ with respect to f defined by (2.17), and

12



the Dirichlet form (EX,FX) corresponding to X is given in Proposition 2.1.
In the following we assume (2.7) and that

for any compact set B ⊂ I, there exists a positive

constant MB satisfying 1B(r) dsR(r) ≤ MB1B(r) dmR(r). (5.1)

We note that the measure μ ⊗ m
(2)
d−1 charges no set of zero EX-capacity. For

this, it is enough to show that, for every compact set B ⊂ I, there is a
positive constant C such that∫

B×Sd−1

|u(r, θ)| dμ(r)dm
(2)
d−1(θ) ≤ CEX

1 (u, u)1/2, u ∈ CX, (5.2)

that is, 1B(r) dμ(r)dm
(2)
d−1(θ) is of finite energy integral, where EX

1 (u, u) =
EX(u, u) + (u, u)

L2(mR⊗m
(2)
d−1;I×Sd−1)

. Let Φ be an element of C∞
0 (J) such that

Φ(sR(r)) = 1 for r ∈ B. We set D = supp[Φ ◦ sR]. Then we find that∫
B×Sd−1

|u(r, θ)| dμ(r)dm
(2)
d−1(θ)

≤ μ(B)A
1/2
d−1

{
EX(u, u)1/2

(∫
J

Φ(ξ)2 dξ

)1/2

+ M
1/2
D

(∫
I×Sd−1

u(r, θ)2 dmR(r)dm
(2)
d−1(θ)

)1/2 (∫
J

Φ′(ξ)2 dξ

)1/2
}

,

which implies (5.2). We note that g(t) defined by (4.1) is a PCAF of X and
PX

(r,θ)(g(t) > 0, t > 0) = 1 for (r, θ) ∈ Γ. Employing Theorem 6.2.1 in [5], we

see that the Dirichlet form (EY,FY) is regular on L2(Γ, μ ⊗ m
(2)
d−1) and has

CX|Γ as a core, where CX|Γ = {u|Γ : u ∈ CX}.
The following lemma is easily obtained, so the proof is omitted.

Lemma 5.1 Assume that
∫
Λ

dsR > 0. Let u ∈ CX and put f = u|Γ. Then
there exists the limit

∂∗
sRf(r, θ) := lim

r′(∈Λ)→r

f(r′, θ) − f(r, θ)

sR(r′) − sR(r)
= lim

r′→r

u(r′, θ) − u(r, θ)

sR(r′) − sR(r)
,

for dsR-a.e. r ∈ Λ and every θ ∈ Sd−1.
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If Λ = I, then EY(u, v) = EX(u, v) for u, v ∈ CX. Therefore we are
restricted to the case that I \ Λ 
= ∅. For a set E ⊂ I we put

ER
E (u, v) =

∫
E

du

dsR

dv

dsR
dsR,

EX
E (f, g) =

∫
Sd−1

ER
E (f(·, θ), g(·, θ)) dm

(2)
d−1(θ) +

∫
E

EΘ(f(r, ·), g(r, ·)) dν(r).

We note that I \Λ = ∪k∈KIk, a finite or a countable disjoint union of open
intervals Ik = (ak, bk) with the end points belonging to Λ ∪ {l1, l2}. Since
CX|Γ is a core of (EY,FY), we fix a u ∈ CX and set f = u|Γ. Then f ∈ FY

and

EY(f, f) = EX(HΓu, HΓu), (5.3)

where HΓu(r, θ) = EPX
(r,θ)

[
u

(
XσX

Γ

)
; σX

Γ < ∞
]
, and σX

Γ = inf{t > 0 : Xt ∈
Γ}. By means of (2.19) and (5.3) we see that

EY(f, f) = EX
Λ (HΓu, HΓu) +

∑
k∈K

EX
Ik

(HΓu, HΓu). (5.4)

Lemma 5.2 It holds true that

EX
Λ (HΓu, HΓu)

=

∫
Γ

∂∗
sRf(r, θ)2 dsR(r)dm

(2)
d−1(θ) +

∫
Λ

EΘ(f(r, ·), f(r, ·)) dν(r). (5.5)

If
∫
Λ

dsR(r) = 0, then the first term of the right hand side vanishes.

Proof. Since PX
(r,θ)(σ

X
Γ = 0) = 1 for (r, θ) ∈ Γ, HΓu = u = f on Γ.

Combining this with Lemma 5.1, we obtain (5.5). �

We are going to derive an explicit form of EX
Ik

(HΓu, HΓu). In the following,
we assume

ν = mR on I \ Λ. (5.6)

For r ∈ Ik = (ak, bk) and θ, ϕ ∈ Sd−1, we set

Gk,1(r; θ, ϕ) =EPR
r

[
pΘ(σR

bk
, θ, ϕ); σR

bk
< σR

ak

]
, (5.7)
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Gk,2(r; θ, ϕ) =EPR
r

[
pΘ(σR

ak
, θ, ϕ); σR

ak
< σR

bk

]
. (5.8)

By means of (2.8), (2.9) and (2.15) we see that

Gk,1(r; θ, ϕ) =

∫ ∞

0

pΘ(t, θ, ϕ)hR
Ik

(t, r, bk) dt

=
∞∑

n=0

κ(n)∑
l=1

Sl
n(θ)Sl

n(ϕ)EPR
r

[
e
−γnσR

bk ; σR
bk

< σR
ak

]
, (5.9)

Gk,2(r; θ, ϕ) =

∫ ∞

0

pΘ(t, θ, ϕ)hR
Ik

(t, r, ak) dt

=
∞∑

n=0

κ(n)∑
l=1

Sl
n(θ)Sl

n(ϕ)EPR
r

[
e−γnσR

ak ; σR
ak

< σR
bk

]
, (5.10)

for r ∈ Ik = (ak, bk) and θ, ϕ ∈ Sd−1.

Lemma 5.3 Let r ∈ Ik and θ ∈ Sd−1. If l1 = ak < bk < l2, then

HΓu(r, θ) =

∫
Sd−1

f(bk, ϕ)Gk,1(r; θ, ϕ) dm
(2)
d−1(ϕ). (5.11)

If l1 < ak < bk = l2, then

HΓu(r, θ) =

∫
Sd−1

f(ak, ϕ)Gk,2(r; θ, ϕ) dm
(2)
d−1(ϕ). (5.12)

If l1 < ak < bk < l2, then

HΓu(r, θ) =

∫
Sd−1

{
f(ak, ϕ)Gk,2(r; θ, ϕ) + f(bk, ϕ)Gk,1(r; θ, ϕ)

}
dm

(2)
d−1(ϕ).

(5.13)

Proof. Let l1 < ak < bk < l2, r ∈ Ik and θ ∈ Sd−1. Note that PX
(r,θ)(σ

X
Γ =

σR
ak

∧ σR
bk

< ∞) = 1. By the assumption (5.6),

f(σR
ak

∧ σR
bk

) =

∫
I

lR(σR
ak

∧ σR
bk

, ξ) dν(ξ)

=

∫
Ik

lR(σR
ak

∧ σR
bk

, ξ) dmR(ξ) = σR
ak

∧ σR
bk

, PR
r -a.e. r.
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Therefore, virtue of (2.15), we find that

HΓu(r, θ) = EPX
(r,θ)

[
u

(
RσX

Γ
, Θf(σX

Γ )

)
; σX

Γ < ∞
]

=

∞∑
n=0

κ(n)∑
l=1

Sl
n(θ)

∫
Sd−1

Sl
n(ϕ)EPR

r

[
u(RσX

Γ
, ϕ)e−γnf(σX

Γ )
]

dm
(2)
d−1(ϕ)

=

∞∑
n=0

κ(n)∑
l=1

Sl
n(θ)

∫
Sd−1

Sl
n(ϕ)

{
f(ak, ϕ)EPR

r

[
e−γnσR

ak ; σR
ak

< σR
bk

]

+ f(bk, ϕ)EPR
r

[
e
−γnσR

bk ; σR
bk

< σR
ak

]}
dm

(2)
d−1(ϕ).

Combining this with (5.9) and (5.10), we obtain (5.13).
Let l1 = ak < bk < l2 r ∈ Ik and θ ∈ Sd−1. Then PX

(r,θ)(σ
X
Γ = σR

bk
< ∞) =

PX
(r,θ)(σ

X
Γ = σR

bk
< σR

ak
). Therefore we obtain (5.11) in the same way as above.

We also obtain (5.12) by the same argument as that for (5.11). �

By virtue of a general theory of ODGDP’s, there exist the following limits
(see [8]).

J1,1
k (θ, ϕ) := lim

r↓ak

DsR(r)Gk,2(r; θ, ϕ). (5.14)

J1,2
k (θ, ϕ) := lim

r↓ak

DsR(r)Gk,1(r; θ, ϕ). (5.15)

J2,1
k (θ, ϕ) := − lim

r↑bk

DsR(r)Gk,2(r; θ, ϕ). (5.16)

J2,2
k (θ, ϕ) := − lim

r↑bk

DsR(r)Gk,1(r; θ, ϕ). (5.17)

We denote by M the product measure m
(2)
d−1 ⊗ m

(2)
d−1.

Lemma 5.4 (i) Let l1 = ak < bk < l2. Then

EX
Ik

(HΓu, HΓu)

=
1

2

∫
Sd−1×Sd−1

{f(bk, θ) − f(bk, ϕ)}2J2,2
k (θ, ϕ) dM(θ, ϕ)

+
1

sR(bk) − sR(l1)

∫
Sd−1

f(bk, θ)
2 dm

(2)
d−1(θ). (5.18)

The second term of the right hand side vanishes if sR(l1) = −∞.
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(ii) Let l1 < ak < bk = l2. Then

EX
Ik

(HΓu, HΓu)

=
1

2

∫
Sd−1×Sd−1

{f(ak, θ) − f(ak, ϕ)}2J1,1
k (θ, ϕ) dM(θ, ϕ)

+
1

sR(l2) − sR(ak)

∫
Sd−1

f(ak, θ)
2 dm

(2)
d−1(θ). (5.19)

The second term of the right hand side vanishes if sR(l2) = ∞.

Proof. We assume l1 = ak < bk < l2, and write a and b in place of ak and
bk, respectively. By means of Green’s formula, (5.11) and (5.17),

EX
Ik

(HΓu, HΓu)

=

∫
Sd−1

HΓu(b, θ) lim
r↑b

DsR(r)HΓu(r, θ) dm
(2)
d−1(θ)

= −
∫

Sd−1×Sd−1

f(b, θ)f(b, ϕ)J2,2
k (θ, ϕ) dM(θ, ϕ)

=
1

2

∫
Sd−1×Sd−1

{f(b, θ) − f(b, ϕ)}2J2,2
k (θ, ϕ) dM(θ, ϕ)

− 1

2

∫
Sd−1×Sd−1

{f(b, θ)2 + f(b, ϕ)2}J2,2
k (θ, ϕ) dM(θ, ϕ).

Noting J2,2
k (θ, ϕ) = J2,2

k (ϕ, θ), we get

− 1

2

∫
Sd−1×Sd−1

{f(b, θ)2 + f(b, ϕ)2}J2,2
k (θ, ϕ) dM(θ, ϕ)

= −
∫

Sd−1×Sd−1

f(b, θ)2J2,2
k (θ, ϕ) dM(θ, ϕ)

=

∫
Sd−1

f(b, θ)2 lim
r↑b

DsR(r)HΓ1(r, θ) dm
(2)
d−1(θ)

=
1

sR(bk) − sR(l1)

∫
Sd−1

f(b, θ)2 dm
(2)
d−1(θ).

Here we used the following fact for the last equality.

HΓ1(r, θ) = PX
(r,θ)(σ

X
Γ < ∞) = PR

r (σR
b < σR

a ) =
sR(r) − sR(a)

sR(b) − sR(a)
,
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(see [6]). Thus we arrive at the first assertion. In the same way as above we
obtain the second assertion. �

Lemma 5.5 Let l1 < ak < bk < l2. Then

EX
Ik

(HΓu, HΓu)

=
1

2

∫
Sd−1×Sd−1

{f(ak, θ) − f(ak, ϕ)}2J1,1
k (θ, ϕ) dM(θ, ϕ)

+
1

2

∫
Sd−1×Sd−1

{f(ak, θ) − f(bk, ϕ)}2J1,2
k (θ, ϕ) dM(θ, ϕ)

+
1

2

∫
Sd−1×Sd−1

{f(bk, θ) − f(ak, ϕ)}2J2,1
k (θ, ϕ) dM(θ, ϕ)

+
1

2

∫
Sd−1×Sd−1

{f(bk, θ) − f(bk, ϕ)}2J2,2
k (θ, ϕ) dM(θ, ϕ). (5.20)

Proof. We set a = ak and b = bk. By means of Green’s formula,
(5.13),(5.14),(5.15),(5.16) and (5.17),

EX
Ik

(HΓu, HΓu)

=

∫
Sd−1

HΓu(b, θ) lim
r↑b

DsR(r)HΓu(r, θ) dm
(2)
d−1(θ)

−
∫

Sd−1

HΓu(a, θ) lim
r↓a

DsR(r)HΓu(r, θ) dm
(2)
d−1(θ)

= −
∫

Sd−1×Sd−1

f(b, θ)f(a, ϕ)J2,1
k (θ, ϕ) dM(θ, ϕ)

−
∫

Sd−1×Sd−1

f(b, θ)f(b, ϕ)J2,2
k (θ, ϕ) dM(θ, ϕ)

−
∫

Sd−1×Sd−1

f(a, θ)f(a, ϕ)J1,1
k (θ, ϕ) dM(θ, ϕ)

−
∫

Sd−1×Sd−1

f(a, θ)f(b, ϕ)J1,2
k (θ, ϕ) dM(θ, ϕ)

=
1

2

∫
Sd−1×Sd−1

{f(b, θ) − f(a, ϕ)}2J2,1
k (θ, ϕ) dM(θ, ϕ)

− 1

2

∫
Sd−1×Sd−1

{f(b, θ)2 + f(a, ϕ)2}J2,1
k (θ, ϕ) dM(θ, ϕ)
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+
1

2

∫
Sd−1×Sd−1

{f(b, θ) − f(b, ϕ)}2J2,2
k (θ, ϕ) dM(θ, ϕ)

− 1

2

∫
Sd−1×Sd−1

{f(b, θ)2 + f(b, ϕ)2}J2,2
k (θ, ϕ) dM(θ, ϕ)

+
1

2

∫
Sd−1×Sd−1

{f(a, θ) − f(a, ϕ)}2J1,1
k (θ, ϕ) dM(θ, ϕ)

− 1

2

∫
Sd−1×Sd−1

{f(a, θ)2 + f(a, ϕ)2}J1,1
k (θ, ϕ) dM(θ, ϕ)

+
1

2

∫
Sd−1×Sd−1

{f(a, θ) − f(b, ϕ)}2J1,2
k (θ, ϕ) dM(θ, ϕ)

− 1

2

∫
Sd−1×Sd−1

{f(a, θ)2 + f(b, ϕ)2}J1,2
k (θ, ϕ) dM(θ, ϕ)

≡ V1 + V2 + V3 + V4 + V5 + V6 + V7 + V8.

In the same way as above, we also find

EX
Ik

(HΓ(u2), HΓ1)

= −
∫

Sd−1×Sd−1

f(b, θ)2{J2,1
k (θ, ϕ) + J2,2

k (θ, ϕ)} dM(θ, ϕ)

−
∫

Sd−1×Sd−1

f(a, θ)2{J1,1
k (θ, ϕ) + J1,2

k (θ, ϕ)} dM(θ, ϕ)

= −
∫

Sd−1×Sd−1

f(a, ϕ)2{J2,1
k (θ, ϕ) + J1,1

k (θ, ϕ)} dM(θ, ϕ)

−
∫

Sd−1×Sd−1

f(b, ϕ)2{J2,2
k (θ, ϕ) + J1,2

k (θ, ϕ)} dM(θ, ϕ).

Combining this with HΓ1(r, θ) = PR
r (σR

a ∧ σR
b < ∞) = 1, we have

V2 + V4 + V6 + V8 = EX
Ik

(HΓ(u2), HΓ1) = 0.

Therefore we obtain the conclusion of the lemma. �

By virtue of Lemmas 5.2, 5.4, and 5.5, we arrive at the following theorem.

Theorem 5.6 Assume Λ 
= I, (2.7) ,(5.1), and (5.6). Then the Dirichlet

form (EY,FY) of Y is regular on L2(Γ, μ ⊗ m
(2)
d−1) and has CX|Γ as a core.

For f ∈ CX|Γ, the Dirichlet form (EY,FY) is given by the following.

EY(f, f) =

∫
Γ

∂∗
sRf(r, θ)2 dsR(r) dm

(2)
d−1(θ) +

∫
Λ

EΘ(f(r, ·), f(r, ·)) dν(r)
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+
1

2

∑
k∈K:l1<ak<bk≤l2

∫
Sd−1×Sd−1

{f(ak, θ) − f(ak, ϕ)}2J1,1
k (θ, ϕ) dM(θ, ϕ)

+
1

2

∑
k∈K:l1≤ak<bk<l2

∫
Sd−1×Sd−1

{f(bk, θ) − f(bk, ϕ)}2J2,2
k (θ, ϕ) dM(θ, ϕ)

+
1

2

∑
k∈K:l1<ak<bk<l2

∫
Sd−1×Sd−1

{f(ak, θ) − f(bk, ϕ)}2J1,2
k (θ, ϕ) dM(θ, ϕ)

+
1

2

∑
k∈K:l1<ak<bk≤l2

∫
Sd−1×Sd−1

{f(bk, θ) − f(ak, ϕ)}2J2,1
k (θ, ϕ) dM(θ, ϕ)

+ I1(f) + I2(f). (5.21)

Here the first term of the right hand side vanishes in case that
∫
Λ

dsR(r) = 0.
The last two terms Ii(f), i = 1, 2 should be read as

I1(f) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1

sR(bk) − sR(l1)

∫
Sd−1

f(bk, θ)
2 dm

(2)
d−1(θ)

if l1 = ak < bk < l2 and sR(l1) > −∞,

0 otherwise,

I2(f) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1

sR(l2) − sR(ak)

∫
Sd−1

f(ak, θ)
2 dm

(2)
d−1(θ)

if l1 < ak < bk = l2 and sR(l2) < ∞,

0 otherwise,

Example 5.7 Let d ≥ 2 and R be the Bessel process on I = (0,∞) with
the generator GR = 1

2
( d2

dr2 + d−1
r

d
dr

). We may set dsR(r) = 2r1−ddr and
dmR(r) = rd−1dr. Note that the assumption (5.1) is satisfied. The end point
0 is (sR, mR)-entrance and the end point ∞ is (sR, mR)-natural. In the same
way as in [6], we obtain the following.

EPR
r

[
e−γnσR

b

]
=

(r

b

)n

, 0 < r < b. (5.22)

EPR
r

[
e−γnσR

a

]
=

(a

r

)d−2+n

, a < r < ∞. (5.23)

EPR
r

[
e−γnσR

a ; σR
a < σR

b

]
=

(b/r)d−2+n − (r/b)n

(b/a)d−2+n − (a/b)n
, a < r < b. (5.24)
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EPR
r

[
e−γnσR

b ; σR
b < σR

a

]
=

(r/a)n − (a/r)d−2+n

(b/a)n − (a/b)d−2+n
, a < r < b. (5.25)

Here 0 < a < b < ∞ and n ≥ 0, where, if d = 2 and n = 0, (5.24) and (5.25)
are reduced to (5.26) and (5.27), respectively.

PR
r (σR

a < σR
b ) =

log b/r

log b/a
, a < r < b, (5.26)

PR
r (σR

b < σR
a ) =

log r/a

log b/a
, a < r < b. (5.27)

(i) We first consider the case that dν(r) = r−2dmR(r) = rd−3dr. Then
f(t) =

∫
I
lR(t, r)r−2dmR(r) =

∫ t

0
R−2

s ds, hence the skew product
X = [(Rt, Θf(t)), P

R
r ⊗ PΘ

θ , (r, θ) ∈ I × Sd−1] is reduced to d-dimensional
Brownian motion BM(d). The assumption (3.1) is also satisfied for the end
points 0 and ∞. It is well known that the statement (ii) and (iii) of Theo-
rem 3.2 are valid for BM(d).

(ii) Let dμ(r) = 1(0,a)(r)dmR(r) and dν(r) = 1(0,a)(r)dω(r)+1(a,∞)(r)dmR(r),
where 0 < a < ∞ and ω is a Radon measure on I such that supp[ω] = I and
| ∫ a

0
sR(r) dω(r)| = ∞. Since the assumption (5.6) is satisfied, by virtue of

Theorem 5.6, we get the following. For f ∈ CX|(0,a)×Sd−1 ,

EY(f, f) =
1

2

∫
(0,a)×Sd−1

∂f

∂r
(r, θ)2 rd−1dr dm

(2)
d−1(θ)

+

∫
(0,a)

EΘ(f(r, ·), f(r, ·)) dω(r)

+
1

2

∫
Sd−1×Sd−1

{f(a, θ) − f(a, ϕ)}2J(θ, ϕ) dM(θ, ϕ) + I(f),

(5.28)

where

I(f) =

⎧⎨
⎩

d − 2

2
ad−2

∫
Sd−1

f(a, θ)2 dm
(2)
d−1(θ), if d ≥ 3,

0, if d = 2.
(5.29)
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Further J(θ, ϕ) is given as follows.

J(θ, ϕ) = lim
r↓a

DsR(r)

∞∑
n=0

κ(n)∑
l=1

Sl
n(θ)Sl

n(ϕ)EPR
r

[
e−γnσR

a

]

= lim
r↓a

DsR(r)

∞∑
n=0

(a/r)d−2+n

κ(n)∑
l=1

Sl
n(θ)Sl

n(ϕ). (5.30)

Especially, if d = 2, then

J(θ, ϕ) = lim
r↓a

DsR(r)

{
1

2π
+

1

π

∞∑
n=1

(a/r)n cosn(θ − ϕ)

}

=
1

π
lim
r↓a

DsR(r)

(a/r) cos(θ − ϕ) − (a/r)2

1 − 2(a/r) cos(θ − ϕ) + (a/r)2

=
1

4π

1

1 − cos(θ − ϕ)
=

(
8π sin2 θ − ϕ

2

)−1

. (5.31)

Therefore EY corresponding to the case d = 2 is given as follows.

EY(f, f) =
1

2

∫
(0,a)×S1

∂f

∂r
(r, θ)2 rdr dθ +

1

2

∫
(0,a)×S1

∂f

∂θ
(r, θ)2 dω(r) dθ

+
1

16π

∫
S1×S1

{f(a, θ) − f(a, ϕ)}2 1

sin2((θ − ϕ)/2)
dθdϕ.

Since the assumption of Theorem 4.2 (ii) is satisfied, the time changed process
corresponding to (5.28) has Feller property in the sense of Proposition 4.1
and Theorem 4.2 (ii).

(iii) Let dμ(r) = 1(a,∞)(r)dmR(r) and dν(r) = 1(0,a)(r)dmR(r)+1(a,∞)(r)dω(r),
where 0 < a < ∞ and ω is a Radon measure on I such that supp[ω] = I.
Since the assumption (5.6) is satisfied, by virtue of Theorem 5.6, we get the
following. For f ∈ CX|(a,∞)×Sd−1 ,

EY(f, f) =
1

2

∫
(a,∞)×Sd−1

∂f

∂r
(r, θ)2 rd−1dr dm

(2)
d−1(θ)

+

∫
(a,∞)

EΘ(f(r, ·), f(r, ·)) dω(r)
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+
1

2

∫
Sd−1×Sd−1

{f(a, θ) − f(a, ϕ)}2J(θ, ϕ) dM(θ, ϕ), (5.32)

where J(θ, ϕ) is given as follows.

J(θ, ϕ) = − lim
r↑a

DsR(r)

∞∑
n=0

κ(n)∑
l=1

Sl
n(θ)Sl

n(ϕ)EPR
r

[
e−γnσR

a

]

= − lim
r↑a

DsR(r)

∞∑
n=0

(r/a)n

κ(n)∑
l=1

Sl
n(θ)Sl

n(ϕ). (5.33)

When d = 2,

J(θ, ϕ) = − lim
r↑a

DsR(r)

{
1

2π
+

1

π

∞∑
n=1

(r/a)n cosn(θ − ϕ)

}

= − 1

π
lim
r↑a

DsR(r)

(r/a) cos(θ − ϕ) − (r/a)2

1 − 2(r/a) cos(θ − ϕ) + (r/a)2

=
1

4π

1

1 − cos(θ − ϕ)
=

(
8π sin2 θ − ϕ

2

)−1

. (5.34)

Therefore EY corresponding to the case d = 2 is given as follows.

EY(f, f) =
1

2

∫
(a,∞)×S1

∂f

∂r
(r, θ)2 rdr dθ +

1

2

∫
(a,∞)×S1

∂f

∂θ
(r, θ)2 dω(r) dθ

+
1

16π

∫
S1×S1

{f(a, θ) − f(a, ϕ)}2 1

sin2((θ − ϕ)/2)
dθdϕ.

Since the assumption of Theorem 4.2 (iii) is satisfied, the time changed pro-
cess corresponding to (5.32) has Feller property in the sense of Proposition 4.1
and Theorem 4.2 (iii).

(iv) Let dμ(r) = 1(a,b)(r)dmR(r) and dν(r) = 1(0,a)∪(b,∞)(r)dmR(r) +
1(a,b)(r)dω(r), where 0 < a < b < ∞ and ω is a Radon measure on I
such that supp[ω] = I. Since the assumption (5.6) is satisfied, by virtue of
Theorem 5.6, we get the following. For f ∈ CX|(a,b)×Sd−1 ,

EY(f, f) =
1

2

∫
(a,b)×Sd−1

∂f

∂r
(r, θ)2 rd−1dr dm

(2)
d−1(θ)
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+

∫
(a,b)

EΘ(f(r, ·), f(r, ·)) dω(r)

+
1

2

∫
Sd−1×Sd−1

{f(a, θ) − f(a, ϕ)}2J1(θ, ϕ) dM(θ, ϕ)

+
1

2

∫
Sd−1×Sd−1

{f(b, θ) − f(b, ϕ)}2J2(θ, ϕ) dM(θ, ϕ)

+I(f), (5.35)

where I(f) is given by (5.29) with b in place of a, J1(θ, ϕ) is given by (5.33),
and J2(θ, ϕ) is given by (5.30) with b in place of a. Therefore, if d = 2, then

J1(θ, ϕ) = J2(θ, ϕ) =

(
8π sin2 θ − ϕ

2

)−1

.

Further EY corresponding to the case d = 2 is given as follows.

EY(f, f) =
1

2

∫
(a,b)×S1

∂f

∂r
(r, θ)2 rdr dθ +

1

2

∫
(a,b)×S1

∂f

∂θ
(r, θ)2 dω(r) dθ

+
1

16π

∫
S1×S1

{f(a, θ) − f(a, ϕ)}2 1

sin2((θ − ϕ)/2)
dθdϕ

+
1

16π

∫
S1×S1

{f(b, θ) − f(b, ϕ)}2 1

sin2((θ − ϕ)/2)
dθdϕ.

Since the assumption of Theorem 4.2 (ii) is satisfied, the time changed process
corresponding to (5.35) has Feller property in the sense of Proposition 4.1

(v) Let dμ(r) = δa(dr) and dν(r) = dmR(r)+Cδa(dr), where 0 < a < ∞,
δa stands for the unit measure concentrated at a point a and C is a positive
number. Since the assumption (5.6) is satisfied, by virtue of Theorem 5.6,
we get the following. For f ∈ CX|{a}×Sd−1 ,

EY(f, f) =CEΘ(f(a, ·), f(a, ·))
+

1

2

∫
Sd−1×Sd−1

{f(a, θ) − f(a, ϕ)}2J(θ, ϕ) dM(θ, ϕ) + I(f),

(5.36)

where I(f) is given by (5.29) and J(θ, ϕ) is given as follows.

J(θ, ϕ) = − lim
r↑a

DsR(r)

∞∑
n=0

κ(n)∑
l=1

Sl
n(θ)Sl

n(ϕ)EPR
r

[
e−γnσR

a

]
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+ lim
r↓a

DsR(r)

∞∑
n=0

κ(n)∑
l=1

Sl
n(θ)Sl

n(ϕ)EPR
r

[
e−γnσR

a

]

= − lim
r↑a

DsR(r)

∞∑
n=0

(r/a)n

κ(n)∑
l=1

Sl
n(θ)Sl

n(ϕ)

+ lim
r↓a

DsR(r)

∞∑
n=0

(a/r)d−2+n

κ(n)∑
l=1

Sl
n(θ)Sl

n(ϕ).

When d = 2, by means of (5.31) and (5.34),

J(θ, ϕ) =

(
4π sin2 θ − ϕ

2

)−1

.

Therefore EY corresponding to the case d = 2 is given as follows.

EY(f, f) =
C

2

∫
S1

∂f

∂θ
(a, θ)2 dθ

+
1

8π

∫
S1×S1

{f(a, θ) − f(a, ϕ)}2 1

sin2((θ − ϕ)/2)
dθdϕ.

Since the assumption of Theorem 4.2 (ii) is satisfied, the time changed process
corresponding to (5.36) has Feller property in the sense of Proposition 4.1.
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