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Feller property and Dirichlet forms for skew 
product diff usion processes and their time change

1 Introduction

Let R = [Rt, P
R
r , ζ

R] be a one dimensional diffusion process (ODDP for brief) on an open
interval I = (l1, l2), and Θ = [Θt, P

Θ
θ ] be the spherical Brownian motion on Sd−1 ⊂ R

d.
In this article we study Feller property of the skew product Ξ = [Ξt = (Rt,Θf(t)), P

Ξ
(r,θ) =

PR
r ⊗ PΘ

θ , (r, θ) ∈ I × Sd−1, ζΞ] with respect to a positive continuous additive functional
(PCAF for brief) f(t) of the ODDP R. We also study Feller property of time changed
processes of the skew product Ξ. Further we present Dirichlet forms of the skew product
Ξ and time changed processes.

Fukushima and Oshima [6], and Okura [11] considered the skew product of conser-
vative Markov processes and obtained some expression of Dirichlet form corresponding
to the skew product. Z.-Q. Chen and Fukushima [1], and Fukushima [4], [5] showed the
Dirichlet forms corresponding to ODDPs. In [13], by using results from [1], [6] and [11],
we obtained the Dirichlet form corresponding to Ξ under the assumption that both of li,
i = 1, 2, are entrance or natural in the sense of Feller [3]. In this article we remove that
assumption, and consider the same problem as in [13]. Okura [12] investigated Dirichlet
forms corresponding to the skew product of Markov processes which are not necessar-
ily conservative. He regarded the Revuz measure of PCAF as a killing measure, and
considered a new Dirichlet form with killing part. Then he derived Dirichlet forms corre-
sponding to the skew product. Fukushima [5] made clear Dirichlet forms of ODDPs with
killing measure. Combining the results of [5] and [12], we can obtain the Dirichlet form
corresponding to Ξ in general case (Proposition 2.1). In our argument corresponding to
the case that li is regular with reflecting boundary condition in the sense of Feller, we
assume that the Revuz measure of PCAF is bounded near li. This assumption is nec-
essary and sufficient for the Revuz measure of PCAF in some sense. We show this fact
following the same argument as for Feller property of the skew product (Remark 3.3).
The details on properties of ODDPs are well known (cf. [8], [10]). By using their results,
we show Feller properties of the skew product Ξ (Theorem 3.2). Further we show Feller
properties and Dirichlet forms of the time change of Ξ following the same argument as
in [13] (Theorems 4.2 and 5.1).

2 Dirichlet form of skew product

Let ρ = [ρt, P
ρ
r , ζ

ρ] be a one dimensional generalized diffusion process (ODGDP for brief)
on an open interval I = (l1, l2) with the scale function s, the speed measure m and the
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killing measure k, where 0 ≤ l1 < l2 ≤ ∞ and ζρ is the life time of ρ. s is a continuous
increasing function on I, m is a nontrivial nonnegative Radon measure on I, and k is
a nonnegative Radon measure on I. When the speed measure m is a positive Radon
measure on I, ρ is called a one dimensional diffusion process (ODDP) on I. We set

Jμ,ν(li) =

∫
(c,li)

dμ(x)

∫
(c,x]

dν(y),

for Borel measures μ and ν on I, where c is an arbitrarily fixed point of I. Following [3],
we call the end point li to be

(s,m, k)-regular if Js,m+k(li) < ∞ and Jm+k,s(li) < ∞,
(s,m, k)-exit if Js,m+k(li) < ∞ and Jm+k,s(li) = ∞,
(s,m, k)-entrance if Js,m+k(li) = ∞ and Jm+k,s(li) < ∞,
(s,m, k)-natural if Js,m+k(li) = ∞ and Jm+k,s(li) = ∞.

When li is (s,m, k)-regular, we pose the reflecting or the absorbing boundary condition
at li (i = 1, 2).

In the following we assume that supp[m], the support of m, coincides with I. Hence
ρ is an ODDP on I.

We consider the following symmetric bilinear form (Eρ,Fρ).

Eρ(u, v) =

∫
I

du

ds

dv

ds
ds+

∫
I

uv dk,

Fρ = {u ∈ L2(I∗,m) ∩ L2(I, k) : u satisfies (2.1), (2.2) and (2.3)},
where I∗ is the interval extended by adding li to I if li is (s,m, k)-regular with reflecting
boundary condition, and we set m({li}) = 0.

u(x) is absolutely continuous with respect to s(x) on I,(2.1)

du

ds
∈ L2(I, s), u(b)− u(a) =

∫
(a,b)

du

ds
ds (a, b ∈ I),(2.2)

lim
x→li

u(x) = 0 if |s(li)| < ∞ but li is not (s,m, k)-regular with reflecting

boundary condition (i = 1, 2).
(2.3)

Then (Eρ,Fρ) is a regular, strongly local, irreducible Dirichlet form on L2(I∗,m) corre-
sponding to the ODDP ρ = [ρt, P

ρ
r , ζ

ρ] (see [5]). Obviously the set {u(s(x)) : u ∈ C1
c (J

∗)}
is a core of (Eρ,Fρ), where J∗ = s(I∗) and C1

c (A) is the set of all C
1-functions on A with

compact support.
We denote by pρt the semigroup of the ODDP ρ, that is,

pρt f(r) = EP ρ
r [f(ρt)] =

∫
I

pρ(t, r, ξ)f(ξ) dm(ξ), t > 0, r ∈ I∗,

for f ∈ Cb(I
∗), where Cb(A) is the set of all bounded continuous functions on a set A,

EP stands for the expectation with respect to the probability measure P , and pρ(t, r, ξ)
denotes the transition probability density of ρ with respect to dm. When li is (s,m, k)-
regular with reflecting boundary condition, we can consider the sample paths starting at
li. Therefore we write the ODDP ρ on I∗ instead of I.

Let Θ = [Θt, P
Θ
θ ] be the spherical Brownian motion on Sd−1 ⊂ R

d with generator
1
2
Δ, Δ being the spherical Laplacian on Sd−1. The corresponding Dirichlet form (EΘ,FΘ)
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on L2(Sd−1,mΘ) is obtained by Fukushima and Oshima [6], where mΘ is the spherical
measure on Sd−1 (see also [13]).

We denote by pΘt the semigroup of the spherical Brownian motion Θ, that is,

pΘt f(θ) = EPΘ
θ [f(Θt)] =

∫
Sd−1

pΘ(t, θ, ϕ)f(ϕ) dmΘ(ϕ), t > 0, θ ∈ Sd−1,

for f ∈ Cb(S
d−1), where pΘ(t, θ, ϕ) stands for the transition probability density of Θ. It

is known that pΘ(t, θ, ϕ) is represented by spherical harmonics Sl
n, that is,

pΘ(t, θ, ϕ) =
∞∑
n=0

e−γnt
κ(n)∑
l=1

Sl
n(θ)S

l
n(ϕ),(2.4)

where γn = 1
2
n(n+d−2), κ(n) = (2n+d−2) · (n+d−3)!/n! (d−2)! which is the number

of spherical harmonics of weight n, 1
2
ΔSl

n = −γnS
l
n, and∫

Sd−1

Sl
nS

k
n dm

Θ =

{
1, l = k,
0, l �= k,

(see [2], [8]). We set Ad−1 =
∫
Sd−1 dm

Θ (the total area of the spherical surface Sd−1), so
that S1

0 = A
−1/2
d−1 . Note that κ(0) = 1.

Let R = [Rt, P
R
r , ζ

R] be the ODDP on I∗ with scale function sR, speed measure
mR, and no killing measure, where I∗ is the interval extended by adding li to I if li is
(sR,mR, 0)-regular with reflecting boundary condition, and we set mR({li}) = 0. We turn
to a skew product of R = [Rt, P

R
r , ζ

R] and Θ = [Θt, P
Θ
θ ]. It is known that the ODDP

R has the local time lR(t, r) which is continuous with respect to (t, r) ∈ [0,∞) × I and
satisfies

∫ t

0
1A(Ru) du =

∫
A
lR(t, r) dmR(r), t > 0, for every measurable set A ⊂ I (see [8]),

where 1A is the indicator for a set A. Let ν be a Radon measure on I and assume that
supp[ν], the support of ν, coincides with I. Furthermore we assume that | ∫

(li,c)
dν| < ∞

whenever li is (sR,mR, 0)-regular (see Remark 3.3 for the reason why | ∫
(li,c)

dν| < ∞ is

assumed). We set

f(t) =

{ ∫
I
lR(t, r) dν(r), t < ζR,

∞, t ≥ ζR.
(2.5)

Since supp[ν] = I, we see that

PR
r (f(t) > 0, t > 0) = 1, r ∈ I∗.

Let Ξ = [Ξt = (Rt,Θf(t)), P
Ξ
(r,θ) = PR

r ⊗PΘ
θ , (r, θ) ∈ I∗× Sd−1, ζΞ] be the skew product of

the ODDP R and the spherical Brownian motion Θ with respect to the PCAF f(t), and
set

EΞ(f, g) =

∫
Sd−1

ER(f(·, θ), g(·, θ)) dmΘ(θ) +

∫
I

EΘ(f(r, ·), g(r, ·)) dν(r),(2.6)

for f, g ∈ CΞ, where CΞ is the set of all linear combinations of u(1)(sR(r))u(2)(θ) with
u(1) ∈ C1

c (J
∗) and u(2) ∈ C∞(Sd−1), where J∗ = sR(I∗). Then we have the following

result.

Proposition 2.1 The form (EΞ, CΞ) is closable on L2(I∗×Sd−1,mR ⊗mΘ). The closure
(EΞ,FΞ) is a regular Dirichlet form and it is corresponding to the skew product Ξ.
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Proof. When both of li, i = 1, 2, are (sR,mR, 0)-entrance, or -natural, the statement
is obtained in Proposition 2.1 of [13]. In the following we do not assume that both of
li, i = 1, 2, are (sR,mR, 0)-entrance, or -natural. Hence R is not necessarily conservative.
Okura [12] considered the skew product of symmetric Markov processes which are not
necessarily conservative, and we can employ his results.

Let R̃ be the ODDP on I with scale function sR, speed measure mR, and killing
measure ν. Since | ∫

(li,c)
dν| < ∞ whenever li is (sR,mR, 0)-regular, li is (sR,mR, 0)-

regular if and only if li is (sR,mR, ν)-regular. When li is (s
R,mR, ν)-regular, we set the

reflecting [resp. absorbing] boundary condition at li for R̃ according to li being (s
R,mR, 0)-

reflecting [resp. absorbing] for R. We extend the interval I to Ĩ by adding li to I if li is
(sR,mR, ν)-regular with reflecting boundary condition, and we set mR({li}) = 0. We set

Ẽ(u, v) =
∫
I

du

dsR
dv

dsR
dsR +

∫
I

uv dν,

F̃ = {u ∈ L2(Ĩ , mR) ∩ L2(I, ν) : u satisfies (2.1), (2.2) and (2.3) with sR and

ν in place of s and k, respectively}.

By means of Theorem 2.2 of [5], (Ẽ , F̃) is a regular, strongly local, irreducible Dirichlet

form on L2(Ĩ , mR) corresponding to the ODDP R̃. We note Ĩ = I∗. Therefore the set

{u(1)(sR(r)) : u(1) ∈ C1
c (J

∗)} is a core of (Ẽ , F̃). Thus by means of Theorem 3.1 of [12]
we obtain the proposition. �

3 Feller property of the skew product

Let Ξ = [Ξt = (Rt,Θf(t)), P
Ξ
(r,θ) = PR

r ⊗ PΘ
θ , (r, θ) ∈ I∗ × Sd−1, ζΞ] be the skew product

of the ODDP R and the spherical Brownian motion Θ with respect to the PCAF f(t)
defined in the preceding section. We show Feller property of the skew product Ξ. Denote
by pΞt the semigroup of the skew product Ξ, that is,

pΞt f(r, θ) = EPR
r ⊗PΘ

θ [f(Rt,Θf(t))], t > 0, (r, θ) ∈ I∗ × Sd−1,

for f ∈ Cb(I
∗ × Sd−1). By virtue of (2.4) we obtain the following

pΞt f(r, θ) =

∫
Sd−1

EPR
r
[
f(Rt, ϕ) p

Θ(f(t), θ, ϕ)
]
dmΘ(ϕ)(3.1)

=
∞∑
n=0

κ(n)∑
l=1

Sl
n(θ)

∫
Sd−1

Sl
n(ϕ)E

PR
r
[
f(Rt, ϕ)e

−γnf(t)] dmΘ(ϕ).

Since EPR
r
[
f(Rt, η)e

−γnf(t)] is continuous in r ∈ I∗ (see [8]), we immediately obtain the
following result by means of (3.1), so we omit the proof.

Proposition 3.1 Let f ∈ Cb(I
∗ × Sd−1) and t > 0. Then pΞt f ∈ Cb(I

∗ × Sd−1).

Let us observe the behavior of pΞt f(r, θ) as r → li.

Theorem 3.2 Let i = 1, 2, t > 0, θ ∈ Sd−1 and f ∈ Cb(I
∗ × Sd−1).
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(i) If li is (s
R,mR, 0)-regular with reflecting boundary condition, then

lim
r→li

pΞt f(r, θ) = pΞt f(li, θ).

(ii) If the end point li is (sR,mR, 0)-regular with absorbing boundary condition or -exit,
then

lim
r→li

pΞt f(r, θ) = 0.(3.2)

(iii) If the end point li is (s
R,mR, 0)-entrance, then there exist the limits

limr→li E
PR
r
[
f(Rt, θ)e

−Cf(t)
]
and limr→li p

Ξ
t f(r, θ) for each C ≥ 0. In particular, if the

measure ν satisfies ∣∣∣∣
∫
(c,li)

sR(r) dν(r)

∣∣∣∣ = ∞,(3.3)

then

lim
r→li

EPR
r
[
f(Rt, θ) e

−Cf(t)
]
= 0, C > 0.(3.4)

lim
r→li

pΞt f(r, θ) =
1

Ad−1

∫
Sd−1

lim
r→li

EPR
r [f(Rt, ϕ)] dm

Θ(ϕ).(3.5)

Note that the limit (3.5) is independent of θ.
(iv) If the end point li is (sR,mR, 0)-natural and there exists the limit limr→li f(r, θ) = 0
for each θ ∈ Sd−1, then (3.2) holds true.

Proof. (i) Assume that the end point li is (s
R,mR, 0)-regular with reflecting boundary

condition. The statement is obvious by Proposition 3.1.
(ii) Assume that the end point li is (s

R,mR, 0)-regular with absorbing boundary con-
dition or -exit. Then, by virtue of properties of ODDP R,

lim
r→li

∣∣∣EPR
r
[
f(Rt, ϕ)e

−Cf(t)
]∣∣∣ ≤ lim

r→li
EPR

r [|f(Rt, ϕ)|] = 0, C ≥ 0, ϕ ∈ Sd−1.(3.6)

Combining this with (3.1), we obtain (3.2).
(iii) Assume that the end point li is (sR,mR, 0)-entrance. It follows from proper-

ties of ODDP R and (3.1) that there exist the limits limr→li E
PR
r
[
f(Rt, θ)e

−Cf(t)
]
and

limr→li p
Ξ
t f(r, θ) for each C ≥ 0 and θ ∈ Sd−1.

We next show (3.4) and (3.5) under the assumption (3.3). We may set i = 1. In the
case that l2 is (s

R,mR, 0)-entrance or -natural, (3.4) and (3.5) are obtained in Theorem 3.2
of [13]. The proof of [13] is available in this paper, too. So we only give the outline of the
proof. We note

ζR =

{
σR
l2
, if l2 is (sR,mR, 0)-regular with absorbing boundary condition, or -exit,

∞, otherwise,

where σR
a is the first hitting time to a of the ODDP R. Let C > 0 and t > 0. Then we

see the following.

EPR
r
[
e−Cf(t)

]
= EPR

r
[
e−Cf(t), t < ζR

]
(3.7)

= EPR
r
[
e−Cf(t), t < ζR, t < σR

a

]
+ EPR

r
[
e−Cf(t), t < ζR, t ≥ σR

a

]
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≤ PR
r

(
t < σR

a

)
+ EPR

r

[
e−Cf(σR

a )
]
,

for any a ∈ I. Since l1 is (sR,mR, 0)-entrance, we get

(3.8) lim sup
a→l1

lim sup
r→l1

PR
r

(
t < σR

a

)
= 0.

Let Q be the ODDP on I with scale function sR, speed measure ν, and no killing measure.
Note that l1 is (sR, ν, 0)-natural by virtue of (3.3), and the law of

[
f(σR

a ), P
R
r , r ∈ (l1, a)

]
is the same as that of

[
σQ
a , P

Q
r , r ∈ (l1, a)

]
. Therefore, by using properties of Q,

lim
r→l1

EPR
r

[
e−Cf(σR

a )
]
= lim

r→l1
EPQ

r

[
e−CσQ

a

]
= 0.(3.9)

Combining this with (3.7) and (3.8), we have

lim
r→l1

EPR
r
[
e−Cf(t)

]
= 0,

from which (3.4) follows. (3.5) is obtained by (3.1) and (3.4).
(iv) Assume that the end point li is (sR,mR, 0)-natural and there exists the limit

limr→li f(r, θ) = 0 for each θ ∈ Sd−1. Then, by virtue of properties of ODDP R, we get
(3.6). Therefore (3.2) follows from (3.1) and (3.6). �

Remark 3.3 (a) Let l1 = 0 be (sR,mR, 0)-entrance and assume (3.3) for i = 1. Then
the statement (ii) implies that the skew product Ξ on I∗ × Sd−1 is uniquely extended to
the diffusion process on I∗ × Sd−1 ∪ {0}, where 0 is the original point of Rd.

(b) When we consider the skew product Ξ of the ODDP R on I∗ and the spherical
Brownian motion Θ with respect to PCAF f(t) of R following [6], [11], and [12], the
Revuz measure ν of f(t) is a Radon measure on I∗. Therefore we assume | ∫

(li,c)
dν| < ∞

whenever li is (s
R,mR, 0)-regular with reflecting boundary condition. Here we show that

the condition | ∫
(li,c)

dν| < ∞ is necessary for the Revuz measure of PCAF f(t) of the

skew product Ξ if li is (s
R,mR, 0)-regular with reflecting boundary condition.

Assume that the end point l1 is (s
R,mR, 0)-regular with reflecting boundary condition,

and the measure ν satisfies ∣∣∣∣
∫
(l1,c)

dν(r)

∣∣∣∣ = ∞.(3.10)

Let f ∈ Cb(I
∗ × Sd−1). Then, by means of properties of ODDPs, we see the following.

EPR
l1 [f(Rt, θ)] = lim

r→l1
EPR

r [f(Rt, θ)], t > 0, θ ∈ Sd−1.

(3.7) holds true in this case, too. Since l1 is (sR,mR, 0)-regular with reflecting boundary
condition, we get (3.8). Note that l1 is (sR, ν, 0)-exit or -natural by virtue of (3.10), and
f(σR

a ) is the first passage time to a of the ODDP Q with scale function sR, speed measure
ν, and no killing measure. By means of some properties of ODDP Q, we get (3.9) and

hence (3.4). Combining (3.4) with (3.1), we get (3.5). Let R̃ and (Ẽ , F̃) be the ODDP
and the corresponding Dirichlet form given in the proof of Proposition 2.1, respectively.
Since |sR(l1)| < ∞ and l1 is (sR,mR, ν)-exit or -natural by virtue of (3.10), we find by
(2.3) that

lim
r→l1

u(r) = 0 for u ∈ F̃ .
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Applying Okura’s result [12], we get that all functions belonging to the core CΞ vanish on
{l1} × Sd−1, where CΞ is given right after (2.6). By virtue of general theory on Dirichlet
form (cf. [7]),

pΞt f ∈ FΞ for f ∈ L2(I∗ × Sd−1,mR ⊗mΘ).

Therefore

lim
r→l1

pΞt f(r, θ) =
1

Ad−1

∫
Sd−1

EPR
l1 [f(Rt, ϕ)] dm

Θ(ϕ) = 0, θ ∈ Sd−1,

for f ∈ Cb(I
∗ × Sd−1) ∩ L2(I∗ × Sd−1,mR ⊗mΘ), from which

EPR
l1 [u(Rt)] = 0, for u ∈ Cb(I

∗) ∩ L2(I∗,mR).

This contradicts the fact that R is the ODDP and l1 is regular with reflecting boundary
condition. Thus the measure ν must satisfy | ∫

(l1,c)
dν| < ∞ if l1 is (sR,mR, 0)-regular

with reflecting boundary condition. In the case l1 being (s
R,mR, 0)-regular with absorbing

boundary condition, the corresponding ODDP R0 is the part on I of R. Therefore we
assume | ∫

(l1,c)
dν| < ∞ in this case, too.

4 Feller property of time changed processes

Let Ξ = [Ξt = (Rt,Θf(t)), P
Ξ
(r,θ) = PR

r ⊗ PΘ
θ , (r, θ) ∈ I∗ × Sd−1, ζΞ] be the skew product

of the ODDP R and the spherical Brownian motion Θ with respect to the PCAF f(t)
defined in Section 2. In this section we consider a time changed process of Ξ and show
its Feller property.

Let Λ be a closed set of I∗ and μ be the restriction of mR to Λ. We set

g(t) =

⎧⎨
⎩

∫
I∗
lR(t, r) dμ(r) =

∫
Λ

lR(t, r) dmR(r), 0 ≤ t < ζR,

∞, t ≥ ζR.
(4.1)

We denote by τ(t) the right continuous inverse of g(t). We consider the time changed
process X = [Xt = (Rτ(t),Θf(τ(t))), P

X
(r,θ) = PR

r ⊗ PΘ
θ , (r, θ) ∈ I∗ × Sd−1, ζX]. Note that

ζX = g(ζR−). Denote by pXt the semigroup of X, that is,

pXt f(r, θ) = EPR
r ⊗PΘ

θ [f(Rτ(t),Θf(τ(t)))], t > 0, (r, θ) ∈ I∗ × Sd−1,

for f ∈ Cb(I
∗ × Sd−1). By virtue of (2.4) we obtain the following

pXt f(r, θ)(4.2)

=

∫
Sd−1

EPR
r
[
f(Rτ(t), ϕ) p

Θ(f(τ(t)), θ, ϕ)
]
dmΘ(ϕ)

=
∞∑
n=0

κ(n)∑
l=1

Sl
n(θ)

∫
Sd−1

Sl
n(ϕ)E

PR
r
[
f(Rτ(t), ϕ)e

−γnf(τ(t))] dmΘ(ϕ).

Note that the time changed process U = [Rτ(t), P
R
r , r ∈ I∗, ζU] is the ODGDP on I∗

with scale function sR, speed measure μ and no killing measure, where ζU = g(ζR−).
We set Γ = Λ × Sd−1. The time changed process X is essentially defined on Γ. Since
EPR

r
[
f(Rτ(t), ϕ)e

−γnf(τ(t))] is continuous in r ∈ Λ (see [8], [9], [14]), the following result is
obvious by means of (4.2). So we omit the proof.
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Proposition 4.1 Let f ∈ Cb(Γ) and t > 0. Then pXt f ∈ Cb(Γ).

We observe the behavior of pXt f(r, θ) as r (∈ Λ) → l1 [resp. l2] when l1 = inf Λ
[resp. l2 = supΛ]. In the same way as in Theorem 4.2 of [13], the following result follows
from Theorem 3.2. So we omit the proof.

Theorem 4.2 Let f ∈ Cb(Γ), t > 0 and θ ∈ Sd−1. The following properties hold true for
the end point li satisfying l1 = inf Λ or l2 = supΛ.
(i) If li is (s

R, μ, 0)-regular with reflecting boundary condition, then

lim
r(∈Λ)→li

pXt f(r, θ) = pXt f(li, θ).

(ii) If the end point li is (s
R, μ, 0)-regular with absorbing boundary condition or -exit, then

lim
r(∈Λ)→li

pXt f(r, θ) = 0.(4.3)

(iii) If the end point li is (s
R, μ, 0)-entrance, then there exist the limits

limr(∈Λ)→li E
PR
r
[
f(Rτ(t), θ)e

−Cf(τ(t))
]
and limr(∈Λ)→li p

X
t f(r, θ) for each C ≥ 0. In particu-

lar, if the measure ν satisfies (3.3), then

lim
r(∈Λ)→li

EPR
r
[
f(Rτ(t), θ) e

−Cf(τ(t))
]
= 0, C > 0.

lim
r(∈Λ)→li

pXt f(r, θ) =
1

Ad−1

∫
Sd−1

lim
r(∈Λ)→li

EPR
r
[
f(Rτ(t), ϕ)

]
dmΘ(ϕ),

which is independent of θ.
(iv) If the end point li is (s

R, μ, 0)-natural and there exists the limit limr(∈Λ)→li f(r, θ) = 0
for each θ ∈ Sd−1, then (4.3) holds true.

5 Dirichlet form of the time changed process

In this section, we derive the Dirichlet form (EX,FX) of the time changed process X defined
in the preceding section. X is a time changed process of Ξ. Ξ is the skew product of R
and Θ with respect to f defined by (2.5), and the Dirichlet form (EΞ,FΞ) corresponding
to Ξ is given in Proposition 2.1. Since μ is the restriction of mR to Λ, the measure μ⊗mΘ

charges no set of zero EΞ-capacity. We note that g(t) defined by (4.1) is a PCAF of Ξ
and PΞ

(r,θ)(g(t) > 0, t > 0) = 1 for (r, θ) ∈ Γ. Since (EΞ,FΞ) is a regular Dirichlet form on

L2(I∗ × Sd−1,mR ⊗mΘ), C := FΞ ∩ Cc(I
∗ × Sd−1) is a special standard core of (EΞ,FΞ)

(see [7]). Hence, employing Theorem 6.2.1 in [7], we see that the Dirichlet form (EX,FX)
is regular on L2(Γ, μ⊗mΘ) and has C|Γ as a core, where C|Γ = {u|Γ : u ∈ C}. Obviously
CΞ|Γ ⊂ C|Γ. If

∫
Λ
dsR > 0, then there exists the limit

∂∗sRf(r, θ) = lim
r′(∈Λ)→r

f(r′, θ)− f(r, θ)

sR(r′)− sR(r)
= lim

r′→r

u(r′, θ)− u(r, θ)

sR(r′)− sR(r)
,

for dsR-a.e. r ∈ Λ and every θ ∈ Sd−1, u ∈ CΞ and f = u|Γ (see Lemma 5.1 of [13]).
Assume that I \ Λ �= ∅. We write that I \ Λ = ∪k∈KIk, a finite or a countable disjoint
union of open intervals Ik = (ak, bk) with the end points belonging to Λ ∪ {l1, l2}. Let
J i,j
k (θ, ϕ), i, j = 1, 2, be the jump measure densities defined by (5.13)–(5.16) of [13], that

is,

J1,1
k (θ, ϕ) = lim

r↓ak
DsR(r)Gk,2(r; θ, ϕ).
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J1,2
k (θ, ϕ) = lim

r↓ak
DsR(r)Gk,1(r; θ, ϕ).

J2,1
k (θ, ϕ) = − lim

r↑bk
DsR(r)Gk,2(r; θ, ϕ).

J2,2
k (θ, ϕ) = − lim

r↑bk
DsR(r)Gk,1(r; θ, ϕ),

for r ∈ Ik = (ak, bk) and θ, ϕ ∈ Sd−1, where

Gk,1(r; θ, ϕ) =
∞∑
n=0

κ(n)∑
l=1

Sl
n(θ)S

l
n(ϕ)E

PR
r

[
e
−γnf(σR

bk
)
; σR

bk
< σR

ak
, σR

bk
< ζR

]
,

Gk,2(r; θ, ϕ) =
∞∑
n=0

κ(n)∑
l=1

Sl
n(θ)S

l
n(ϕ)E

PR
r

[
e−γnf(σ

R
ak

); σR
ak

< σR
bk
, σR

ak
< ζR

]
.

Let M be the product measure mΘ ⊗mΘ. Then the Dirichlet form (EX,FX) is given by
the following.

Theorem 5.1 Assume I \ Λ �= ∅ and let f ∈ CΞ|Γ. Then

EX(f, f) =

∫
Γ

∂∗sRf(r, θ)
2 dsR(r) dmΘ(θ) +

∫
Λ

EΘ(f(r, ·), f(r, ·)) dν(r)

+
1

2

∑
k∈K:l1<ak<bk≤l2

∫
Sd−1×Sd−1

{f(ak, θ)− f(ak, ϕ)}2J1,1
k (θ, ϕ) dM(θ, ϕ)

+
1

2

∑
k∈K:l1≤ak<bk<l2

∫
Sd−1×Sd−1

{f(bk, θ)− f(bk, ϕ)}2J2,2
k (θ, ϕ) dM(θ, ϕ)

+
1

2

∑
k∈K:l1<ak<bk<l2

∫
Sd−1×Sd−1

{f(ak, θ)− f(bk, ϕ)}2J1,2
k (θ, ϕ) dM(θ, ϕ)

+
1

2

∑
k∈K:l1<ak<bk<l2

∫
Sd−1×Sd−1

{f(bk, θ)− f(ak, ϕ)}2J2,1
k (θ, ϕ) dM(θ, ϕ)

+ I1(f) + I2(f).

Here the first term of the right hand side vanishes in case that
∫
Λ
dsR(r) = 0. The last

two terms Ii(f), i = 1, 2 should be read as

I1(f) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1

sR(bk)− sR(l1)

∫
Sd−1

f(bk, θ)
2 dmΘ(θ)

if l1 = ak < bk < l2, sR(l1) > −∞, but l1 is not

(sR,mR, 0)-regular with reflecting boundary condition,

0 otherwise,

I2(f) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1

sR(l2)− sR(ak)

∫
Sd−1

f(ak, θ)
2 dmΘ(θ)

if l1 < ak < bk = l2, sR(l2) < ∞, but l2 is not

(sR,mR, 0)-regular with reflecting boundary condition,

0 otherwise,
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The statement of Theorem 5.1 is same as that of Theorem 5.6 of [13] except Ii(f), i = 1, 2.
Ii(f) (i = 1, 2) of Theorem 5.1 are obtained in the same way as Lemma 5.4 of [13]. So
the proof is omitted.
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Feller property and Dirichlet forms for skew 
product diff usion processes and their time change

TAKEMURA Tomoko and TOMISAKI Matsuyo

We are concerned with the skew product of a one dimensional diff usion process R on 
an open interval and the spherical Brownian motion. The skew product is defi ned by a positive 
continuous additive functional of R. We study Feller property of the skew product and the time 
change. Further we present Dirichlet forms of the skew product and the time change. In 2011, 
we obtained the Dirichlet form corresponding to the skew product under the assumption that 
both end point of the state space of R are entrance or natural in the sense of Feller. In this 
article we remove that assumption and tackle the same problem as the paper we wrote in 
2011. Okura （1998） investigated Dirichlet forms corresponding to the skew product of Markov 
processes which are not necessarily conservative. He regarded the Revuz measure of positive 
continuous additive functional as a killing measure, and considered a new Dirichlet form with 
killing part. Then he derived Dirichlet forms corresponding to the skew product. Fukushima 
（2014） made clear Dirichlet forms of one dimensional diff usion process with killing measure.  
Combining their results, we can obtain the Dirichlet form corresponding to the skew product 
in general case. In our argument corresponding to the case that the end point of state space of 
R is regular with reflecting boundary condition in the sense of Feller, we assume that the 
Revuz measure of positive continuous additive functional is bounded near the end point. This 
assumption is necessary and suffi  cient for the Revuz measure in some sense. We show this fact 
following the same argument as for Feller property of the skew product.


